AFFILIATED INSTITUTIONS

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

R – 2013

PROGRAM EDUCATIONAL OBJECTIVES:

1. To prepare the students to have successful career in industry and motivate for higher education.
2. To provide strong foundation in basic science and mathematics necessary to formulate, solve and analyze electrical and electronics problems.
3. To provide strong foundation in circuit theory, field theory, control theory and signal processing concepts.
4. To provide good knowledge of Electrical power apparatus and their applications in power systems.
5. To provide knowledge on basic electronics to power electronics and their applications in power engineering.
6. To provide an opportunity to work in interdisciplinary groups.
7. To promote student awareness for life long learning and inculcate professional ethics.
8. To provide necessary foundation on computational platforms and software applications related to the respective field of engineering.

PROGRAM OUTCOMES:

a) Ability to understand and apply differential equations, integrals, matrix theory, probability theory and Laplace, Fourier and Z transformations for engineering problems.
b) Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory, control theory and apply them to electrical engineering problems.
c) Ability to model and analyze electrical apparatus and their application to power system.
d) Ability to understand and analyze power system operation, stability, control and protection.
e) Ability to handle the engineering aspects of electrical energy generation and utilization.
f) Ability to understand and analyze linear and digital electronic circuits.
g) Ability to review, prepare and present technological developments.
h) Ability to form a group and develop or solve engineering hardware and problems.
i) To understand and apply computing platform and software for engineering problems.
j) To understand ethical issues, environmental impact and acquire management skills.

<table>
<thead>
<tr>
<th>Program Educational Objective</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
ANNA UNIVERSITY, CHENNAI
AFFILIATED INSTITUTIONS
B. E. ELECTRICAL AND ELECTRONICS ENGINEERING
I TO VIII SEMESTERS CURRICULUM AND SYLLABUS

SEMESTER I

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS6151</td>
<td>Technical English - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA6151</td>
<td>Mathematics - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH6151</td>
<td>Engineering Physics - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY6151</td>
<td>Engineering Chemistry - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE6151</td>
<td>Computer Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE6152</td>
<td>Engineering Graphics</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE6161</td>
<td>Computer Practices Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>GE6162</td>
<td>Engineering Practices Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>GE6163</td>
<td>Physics and Chemistry Laboratory - I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>2</td>
<td>11</td>
<td>26</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS6251</td>
<td>Technical English - II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA6251</td>
<td>Mathematics - II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH6251</td>
<td>Engineering Physics - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY6251</td>
<td>Engineering Chemistry - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE6251</td>
<td>Basic Civil and Mechanical Engineering</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>EE6201</td>
<td>Circuit Theory</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE6262</td>
<td>Physics and Chemistry Laboratory - II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>GE6263</td>
<td>Computer Programming Laboratory</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>EE6211</td>
<td>Electric Circuits Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>4</td>
<td>7</td>
<td>27</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>MA6351</td>
<td>Transforms and Partial Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>EE6301</td>
<td>Digital Logic Circuits</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>8.</td>
<td>EE6302</td>
<td>Electromagnetic Theory</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>GE6351</td>
<td>Environmental Science and Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>EC6202</td>
<td>Electronic Devices and Circuits</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>EE6303</td>
<td>Linear Integrated Circuits and Applications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EC6361</td>
<td>Electronics Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>EE6311</td>
<td>Linear and Digital Integrated Circuits Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>18</td>
<td>4</td>
<td>6</td>
<td>26</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>MA6459</td>
<td>Numerical Methods</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>EE6401</td>
<td>Electrical Machines - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>11.</td>
<td>CS6456</td>
<td>Object Oriented Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>EE6402</td>
<td>Transmission and Distribution</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>EE6403</td>
<td>Discrete Time Systems and Signal Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>EE6404</td>
<td>Measurements and Instrumentation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>CS6461</td>
<td>Object Oriented Programming Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>16.</td>
<td>EE6411</td>
<td>Electrical Machines Laboratory - I</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>18</td>
<td>2</td>
<td>6</td>
<td>24</td>
</tr>
</tbody>
</table>

SEMESTER V

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>EE6501</td>
<td>Power System Analysis</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EE6502</td>
<td>Microprocessors and Microcontrollers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>ME6701</td>
<td>Power Plant Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EE6503</td>
<td>Power Electronics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EE6504</td>
<td>Electrical Machines - II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>IC6501</td>
<td>Control Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EE6511</td>
<td>Control and Instrumentation Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>GE6563</td>
<td>Communication Skills - Laboratory Based</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>EE6512</td>
<td>Electrical Machines Laboratory - II</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>18</td>
<td>2</td>
<td>10</td>
<td>26</td>
</tr>
</tbody>
</table>
SEMESTER VI

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>EC6651</td>
<td>Communication Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EE6601</td>
<td>Solid State Drives</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EE6602</td>
<td>Embedded Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EE6603</td>
<td>Power System Operation and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EE6604</td>
<td>Design of Electrical Machines</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Elective - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EE6611</td>
<td>Power Electronics and Drives Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>EE6612</td>
<td>Microprocessors and Microcontrollers Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>EE6613</td>
<td>Presentation Skills and Technical Seminar</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>18</td>
<td>1</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>

SEMESTER VII

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>EE6701</td>
<td>High Voltage Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>EE6702</td>
<td>Protection and Switchgear</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EE6703</td>
<td>Special Electrical Machines</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>MG6851</td>
<td>Principles of Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Elective – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Elective – III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>EE6711</td>
<td>Power System Simulation Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>EE6712</td>
<td>Comprehension</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>18</td>
<td>0</td>
<td>5</td>
<td>21</td>
</tr>
</tbody>
</table>

SEMESTER VIII

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>EE6801</td>
<td>Electric Energy Generation, Utilization and Conservation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Elective – IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Elective – V</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>EE6811</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9</td>
<td>0</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL CREDITS: 189</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>EE6001</td>
<td>Visual Languages and Applications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>IC6601</td>
<td>Advanced Control System</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EE6002</td>
<td>Power System Transients</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EE6003</td>
<td>Optimisation Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>EI6703</td>
<td>Fibre Optics and Laser Instruments</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>EI6704</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>EE6004</td>
<td>Flexible AC Transmission Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>EE6005</td>
<td>Power Quality</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>EE6006</td>
<td>Applied Soft Computing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>GE6081</td>
<td>Fundamentals of Nanoscience</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>IC6002</td>
<td>System Identification and Adaptive Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>13.</td>
<td>EE6007</td>
<td>Micro Electro Mechanical Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>EE6008</td>
<td>Microcontroller Based System Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.</td>
<td>EE6009</td>
<td>Power Electronics for Renewable Energy Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>EE6010</td>
<td>High Voltage Direct Current Transmission</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>EE6011</td>
<td>Power System Dynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>18.</td>
<td>IC6003</td>
<td>Principles of Robotics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.</td>
<td>GE6075</td>
<td>Professional Ethics in Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>GE6757</td>
<td>Total Quality Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>EC6002</td>
<td>Advanced Digital Signal Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>EE6012</td>
<td>Computer Aided Design of Electrical Apparatus</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>23.</td>
<td>EC6601</td>
<td>VLSI Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To enable learners of Engineering and Technology develop their basic communication skills in English.
- To emphasize specially the development of speaking skills amongst learners of Engineering and Technology.
- To ensure that learners use the electronic media such as internet and supplement the learning materials used in the classroom.
- To inculcate the habit of reading and writing leading to effective and efficient communication.

UNIT I
Listening - Introducing learners to GIE - Types of listening - Listening to audio (verbal & sounds); Speaking - Speaking about one’s place, important festivals etc. – Introducing oneself, one’s family / friend; Reading - Skimming a reading passage – Scanning for specific information - Note-making; Writing - Free writing on any given topic (My favourite place / Hobbies / School life, etc.) - Sentence completion - Autobiographical writing (writing about one’s leisure time activities, hometown, etc.); Grammar - Prepositions - Reference words - Wh-questions - Tenses (Simple); Vocabulary - Word formation - Word expansion (root words / etymology); E-materials - Interactive exercises for Grammar & Vocabulary - Reading comprehension exercises - Listening to audio files and answering questions.

UNIT II
Listening - Listening and responding to video lectures / talks; Speaking - Describing a simple process (filling a form, etc.) - Asking and answering questions - Telephone skills – Telephone etiquette; Reading – Critical reading - Finding key information in a given text - Sifting facts from opinions; Writing - Biographical writing (place, people) - Process descriptions (general/specific) - Definitions - Recommendations – Instructions; Grammar - Use of imperatives - Subject-verb agreement; Vocabulary - Compound words - Word Association (connotation); E-materials - Interactive exercises for Grammar and Vocabulary - Listening exercises with sample telephone conversations / lectures – Picture-based activities.

UNIT III
Listening - Listening to specific task - focused audio tracks; Speaking - Role-play – Simulation - Group interaction - Speaking in formal situations (teachers, officials, foreigners); Reading - Reading and interpreting visual material; Writing - Jumbled sentences - Coherence and cohesion in writing - Channel conversion (flowchart into process) - Types of paragraph (cause and effect / compare and contrast / narrative / analytical) - Informal writing (letter/e-mail/blogs) - Paraphrasing; Grammar - Tenses (Past) - Use of sequence words - Adjectives; Vocabulary - Different forms and uses of words, Cause and effect words; E-materials - Interactive exercises for Grammar and Vocabulary - Excerpts from films related to the theme and follow up exercises - Pictures of flow charts and tables for interpretations.

UNIT IV
Listening - Watching videos / documentaries and responding to questions based on them; Speaking - Responding to questions - Different forms of interviews - Speaking at different types of interviews; Reading - Making inference from the reading passage - Predicting the content of a reading passage; Writing - Interpreting visual materials (line graphs, pie charts etc.) - Essay writing – Different types of essays; Grammar - Adverbs – Tenses – future time reference; Vocabulary - Single word substitutes - Use of abbreviations and acronyms; E-materials - Interactive exercises for Grammar and Vocabulary - Sample interviews - film scenes - dialogue writing.
UNIT V

Listening - Listening to different accents, Listening to Speeches/Presentations, Listening to broadcast and telecast from Radio and TV; Speaking - Giving impromptu talks, Making presentations on given topics; Reading - Email communication - Reading the attachment files having a poem/joke/proverb - Sending their responses through email; Writing - Creative writing, Poster making; Grammar - Direct and indirect speech; Vocabulary - Lexical items (fixed / semi fixed expressions); E-materials - Interactive exercises for Grammar and Vocabulary - Sending emails with attachment – Audio / video excerpts of different accents - Interpreting posters.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
Learners should be able to
• speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
• write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
• read different genres of texts adopting various reading strategies.
• listen/view and comprehend different spoken discourses/excerpts in different accents

TEXTBOOKS:

REFERENCES:

EXTENSIVE Reading (Not for Examination)

WEBSITES:

TEACHING METHODS:
• Lectures
• Activities conducted individually, in pairs and in groups like self introduction, peer introduction, group poster making, grammar and vocabulary games, etc.
• Discussions
• Role play activities
• Short presentations
• Listening and viewing activities with follow up activities like discussion, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc.
EVALUATION PATTERN:

Internal assessment: 20%
3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like

- Project
- Assignment
- Reviews
- Creative writing
- Poster making, etc.

All the four skills are to be tested with equal weightage given to each.

✓ Speaking assessment: Individual speaking activities, Pair work activities like role play, Interview, Group discussions
✓ Reading assessment: Reading passages with comprehension questions graded from simple to complex, from direct to inferential
✓ Writing assessment: Writing paragraphs, essays etc. Writing should include grammar and vocabulary.
✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content.

End Semester Examination: 80%

MA6151 MATHEMATICS – I

OBJECTIVES:

- To develop the use of matrix algebra techniques this is needed by engineers for practical applications.
- To make the student knowledgeable in the area of infinite series and their convergence so that he/ she will be familiar with limitations of using infinite series approximations for solutions arising in mathematical modeling.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To introduce the concepts of improper integrals, Gamma, Beta and Error functions which are needed in engineering applications.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

UNIT I MATRICES 9+3

UNIT II SEQUENCES AND SERIES 9+3

UNIT III APPLICATIONS OF DIFFERENTIAL CALCULUS 9+3
Curvature in Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes – Envelopes - Evolute as envelope of normals.

UNIT IV DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES 9+3

UNIT V MULTIPLE INTEGRALS 9+3

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
• This course equips students to have basic knowledge and understanding in one fields of materials, integral and differential calculus.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I CRYSTAL PHYSICS

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment) - Crystal growth techniques – solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS

Elasticity- Hooke’s law - Relationship between three modulii of elasticity (qualitative) – stress -strain diagram – Poisson’s ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young’s modulus by uniform bending- I-shaped girders

UNIT III QUANTUM PHYSICS

UNIT IV ACOUSTICS AND ULTRASONICS

Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications - Sonogram

UNIT V PHOTONICS AND FIBRE OPTICS

Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TOTAL: 45 PERIODS

OUTCOMES:

- The students will have knowledge on the basics of physics related to properties of matter, optics, acoustics etc., and they will apply these fundamental principles to solve practical problems related to materials used for engineering applications.

TEXT BOOKS:

1. Arumugam M. Engineering Physics. Anuradha publishers, 2010
REFERENCES:
1. Searls and Zemansky. University Physics, 2009
5. Rajagopal K. Engineering Physics. PHI, New Delhi, 2011

CY6151 ENGINEERING CHEMISTRY - I
L T P C 3 0 0 3

OBJECTIVES:
- To make the students conversant with basics of polymer chemistry.
- To make the student acquire sound knowledge of second law of thermodynamics and second law based derivations of importance in engineering applications in all disciplines.
- To acquaint the student with concepts of important photophysical and photochemical processes and spectroscopy.
- To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
- To acquaint the students with the basics of nano materials, their properties and applications.

UNIT I POLYMER CHEMISTRY
Introduction: Classification of polymers – Natural and synthetic; Thermoplastic and Thermosetting. Functionality – Degree of polymerization. Types and mechanism of polymerization: Addition (Free Radical, cationic and anionic); condensation and copolymerization. Properties of polymers: Tg, Tacticity, Molecular weight – weight average, number average and polydispersity index. Techniques of polymerization: Bulk, emulsion, solution and suspension. Preparation, properties and uses of Nylon 6,6, and Epoxy resin.

UNIT II CHEMICAL THERMODYNAMICS
Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free energy and work function: Helmholtz and Gibbs free energy functions (problems); Criteria of spontaneity; Gibbs-Helmholtz equation (problems); Clausius-Clapeyron equation; Maxwell relations – Van’t Hoff isotherm and isochores (problems).

UNIT III PHOTOCHEMISTRY AND SPECTROSCOPY

UNIT IV PHASE RULE AND ALLOYS
Phase rule: Introduction, definition of terms with examples, One Component System- water system - Reduced phase rule - Two Component Systems- classification – lead-silver system, zinc-magnesium system. Alloys: Introduction- Definition- Properties of alloys- Significance of alloying,

UNIT V NANOCHEMISTRY
Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent properties. Nanoparticles: nano cluster, nano rod, nanotube(CNT) and nanowire. Synthesis: precipitation, thermolysis, hydrothermal, solvothermal, electrode position, chemical vapour deposition, laser ablation; Properties and applications

OUTCOMES:
- The knowledge gained on polymer chemistry, thermodynamics, spectroscopy, phase rule and nano materials will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS:

REFERENCES:

GE6151 COMPUTER PROGRAMMING

OBJECTIVES:
The students should be made to:
- Learn the organization of a digital computer.
- Be exposed to the number systems.
- Learn to think logically and write pseudo code or draw flow charts for problems.
- Be exposed to the syntax of C.
- Be familiar with programming in C.
- Learn to use arrays, strings, functions, pointers, structures and unions in C.

UNIT I INTRODUCTION
UNIT II C PROGRAMMING BASICS

UNIT III ARRAYS AND STRINGS

UNIT IV FUNCTIONS AND POINTERS

UNIT V STRUCTURES AND UNIONS
Introduction – need for structure data type – structure definition – Structure declaration – Structure within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor directives.

OUTCOMES:
At the end of the course, the student should be able to:
• Design C Programs for problems.
• Write and execute C programs for simple applications.

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
- To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products.
- To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HAND SKETCHING 5+9
Visualization concepts and Free Hand sketching: Visualization principles – Representation of Three Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES 5+9
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS 5+9
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 5+9
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+9
Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method .

COMPUTER AIDED DRAFTING (Demonstration Only) 3
Introduction to drafting packages and demonstration of their use.

TOTAL : 75 PERIODS
OUTCOMES:
On Completion of the course the student will be able to
- perform free hand sketching of basic geometrical constructions and multiple views of objects.
- do orthographic projection of lines and plane surfaces.
- draw projections and solids and development of surfaces.
- prepare isometric and perspective sections of simple solids.
- demonstrate computer aided drafting.

TEXT BOOK:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day.
OBJECTIVES:
The student should be made to:
- Be familiar with the use of Office software.
- Be exposed to presentation and visualization tools.
- Be exposed to problem solving techniques and flow charts.
- Be familiar with programming in C.
- Learn to use Arrays, strings, functions, structures and unions.

LIST OF EXPERIMENTS:
1. Search, generate, manipulate data using MS office/ Open Office
2. Presentation and Visualization – graphs, charts, 2D, 3D
3. Problem formulation, Problem Solving and Flowcharts
4. C Programming using Simple statements and expressions
5. Scientific problem solving using decision making and looping.
6. Simple programming for one dimensional and two dimensional arrays.
7. Solving problems using String functions
8. Programs with user defined functions – Includes Parameter Passing
9. Program using Recursive Function and conversion from given program to flow chart.
10. Program using structures and unions.

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Apply good programming design methods for program development.
- Design and implement C programs for simple applications.
- Develop recursive programs.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS:
Standalone desktops with C compiler 30 Nos.
(or)
Server with C compiler supporting 30 terminals or more.
OBJECTIVES:

- To provide exposure to the students with hands-on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

Buildings:
(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:

- Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.

(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:

- Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:
(a) Preparation of arc welding of butt joints, lap joints and tee joints.
(b) Gas welding practice

Basic Machining:
(a) Simple Turning and Taper turning
(b) Drilling Practice

Sheet Metal Work:
(a) Forming & Bending:
(b) Model making – Trays, funnels, etc.
(c) Different type of joints.

Machine assembly practice:
(a) Study of centrifugal pump
(b) Study of air conditioner

Demonstration on:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE
1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
5. Measurement of energy using single phase energy meter.

IV ELECTRONICS ENGINEERING PRACTICE
1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EOR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

TOTAL: 45 PERIODS

OUTCOMES:
• ability to fabricate carpentry components and pipe connections including plumbing works.
• ability to use welding equipments to join the structures.
• ability to fabricate electrical and electronics circuits.

REFERENCES:

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL

1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools: (a) Rotary Hammer 2 Nos
 (b) Demolition Hammer 2 Nos
 (c) Circular Saw 2 Nos
 (d) Planer 2 Nos
 (e) Hand Drilling Machine 2 Nos
 (f) Jigsaw 2 Nos
MECHANICAL

1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
8. Power Tool: Angle Grinder 2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner One each.

ELECTRICAL

1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder 2 Nos (b) Digital Live-wire detector 2 Nos

ELECTRONICS

1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply

GE6163 PHYSICS AND CHEMISTRY LABORATORY – I

PHYSICS LABORATORY – I

OBJECTIVES:
- To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS
(Any FIVE Experiments)

1. (a) Determination of Wavelength, and particle size using Laser
 (b) Determination of acceptance angle in an optical fiber.
2. Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer.
3. Determination of wavelength of mercury spectrum – spectrometer grating
5. Determination of Young’s modulus by Non uniform bending method.
6. Determination of specific resistance of a given coil of wire – Carey Foster’s Bridge
OUTCOMES:
- The hands on exercises undergone by the students will help them to apply physics principles of optics and thermal physics to evaluate engineering properties of materials.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. Diode laser, lycopodium powder, glass plate, optical fiber.
2. Ultrasonic interferometer
3. Spectrometer, mercury lamp, grating
4. Lee’s Disc experimental set up
5. Traveling microscope, meter scale, knife edge, weights
6. Carey foster’s bridge set up
 (vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY - I

OBJECTIVES:
- To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
- To acquaint the students with the determination of molecular weight of a polymer by vacometry.

LIST OF EXPERIMENTS
(Any FIVE Experiments)

1. Determination of DO content of water sample by Winkler’s method.
2. Determination of chloride content of water sample by argentometric method.
3. Determination of strength of given hydrochloric acid using pH meter.
4. Determination of strength of acids in a mixture using conductivity meter.
5. Estimation of iron content of the water sample using spectrophotometer.
 (1,10- phenanthroline / thiocyanate method).
7. Conductometric titration of strong acid vs strong base.

TOTAL: 30 PERIODS

OUTCOMES:
- The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters.

REFERENCES:

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. Iodine flask - 30 Nos
2. pH meter - 5 Nos
3. Conductivity meter - 5 Nos
4. Spectrophotometer - 5 Nos
5. Ostwald Viscometer - 10 Nos

Common Apparatus: Pipette, Burette, conical flask, porcelain tile, dropper (each 30 Nos.)

HS6251 TECHNICAL ENGLISH II

OBJECTIVES:
- To make learners acquire listening and speaking skills in both formal and informal contexts.
- To help them develop their reading skills by familiarizing them with different types of reading strategies.
- To equip them with writing skills needed for academic as well as workplace contexts.
- To make them acquire language skills at their own pace by using e-materials and language lab components.

UNIT I
9+3
Listening - Listening to informal conversations and participating; Speaking - Opening a conversation (greetings, comments on topics like weather) - Turn taking - Closing a conversation (excuses, general wish, positive comment, thanks); Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading; Writing - Effective use of SMS for sending short notes and messages - Using ‘emoticons’ as symbols in email messages; Grammar - Regular and irregular verbs - Active and passive voice; Vocabulary - Homonyms (e.g. ‘can’) - Homophones (e.g. ‘some’, ‘sum’); E-materials - Interactive exercise on Grammar and vocabulary – blogging; Language Lab - Listening to different types of conversation and answering questions.

UNIT II
9+3
Listening - Listening to situation based dialogues; Speaking - Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read); Reading - Reading a short story or an article from newspaper, Critical reading, Comprehension skills; Writing - Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his / her success, thanking one’s friends / relatives); Grammar - modal verbs, Purpose expressions; Vocabulary - Phrasal verbs and their meanings, Using phrasal verbs in sentences; E-materials - Interactive exercises on Grammar and vocabulary, Extensive reading activity (reading stories / novels), Posting reviews in blogs - Language Lab - Dialogues (Fill up exercises), Recording students’ dialogues.

UNIT III
9+3
Listening - Listening to the conversation - Understanding the structure of conversations; Speaking - Conversation skills with a sense of stress, intonation, pronunciation and meaning - Seeking information – expressing feelings (affection, anger, regret, etc.); Reading - Speed reading – reading passages with time limit - Skimming; Writing - Minutes of meeting – format and practice in the preparation of minutes - Writing summary after reading articles from journals - Format for journal articles – elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) - Writing strategies; Grammar - Conditional clauses - Cause and effect expressions; Vocabulary - Words used as nouns and verbs without any change in the spelling (e.g. ‘rock’, ‘train’, ‘ring’); E-materials - Interactive exercise on Grammar and vocabulary - Speed Reading practice exercises; Language Lab - Intonation practice using EFLU and RIE materials – Attending a meeting and writing minutes.
UNIT IV
9+3
Listening - Listening to a telephone conversation, Viewing model interviews (face-to-face, telephonic and video conferencing); Speaking - Role play practice in telephone skills - listening and responding, -asking questions, -note taking – passing on messages, Role play and mock interview for grasping interview skills; Reading - Reading the job advertisements and the profile of the company concerned – scanning; Writing - Applying for a job – cover letter - résumé preparation – vision, mission and goals of the candidate; Grammar - Numerical expressions - Connectives (discourse markers); Vocabulary - Idioms and their meanings – using idioms in sentences; E-materials - Interactive exercises on Grammar and Vocabulary - Different forms of résumés- Filling up a résumé / cover letter; Language Lab - Telephonic interview – recording the responses - e-résumé writing.

UNIT V
9+3
Listening - Viewing a model group discussion and reviewing the performance of each participant - Identifying the characteristics of a good listener; Speaking - Group discussion skills – initiating the discussion – exchanging suggestions and proposals – expressing dissent/agreement – assertiveness in expressing opinions – mind mapping technique; Reading - Note making skills – making notes from books, or any form of written materials - Intensive reading; Writing – Checklist - Types of reports – Feasibility / Project report – report format – recommendations / suggestions – interpretation of data (using charts for effective presentation); Grammar - Use of clauses; Vocabulary – Collocation; E-materials - Interactive grammar and vocabulary exercises - Sample GD - Pictures for discussion, Interactive grammar and vocabulary exercises; Language Lab - Different models of group discussion.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
Learners should be able to

- speak convincingly, express their opinions clearly, initiate a discussion, negotiate, argue using appropriate communicative strategies.
- write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
- read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.
- listen/view and comprehend different spoken excerpts critically and infer unspoken and implied meanings.

TEXTBOOKS:

REFERENCES:
EXTENSIVE Reading (Not for Examination)

Websites
2. http://owl.english.purdue.edu

TEACHING METHODS:
- Lectures
- Activities conducted individually, in pairs and in groups like individual writing and presentations, group discussions, interviews, reporting, etc
- Long presentations using visual aids
- Listening and viewing activities with follow up activities like discussions, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc
- Projects like group reports, mock interviews etc using a combination of two or more of the language skills

EVALUATION PATTERN:

Internal assessment: 20%
- 3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like
 - Project
 - Assignment
 - Report
 - Creative writing, etc.
- All the four skills are to be tested with equal weightage given to each.
 ✓ Speaking assessment: Individual presentations, Group discussions
 ✓ Reading assessment: Reading passages with comprehension questions graded following Bloom’s taxonomy
 ✓ Writing assessment: Writing essays, CVs, reports etc. Writing should include grammar and vocabulary.
 ✓ Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content graded following Bloom’s taxonomy.

End Semester Examination: 80%
OBJECTIVES:

- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- To acquaint the student with the concepts of vector calculus needed for problems in all engineering disciplines.
- To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow of electric current.
- To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.

UNIT I VECTOR CALCULUS 9+3
Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green’s theorem in a plane, Gauss divergence theorem and Stokes’ theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelepipeds.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS 9+3
Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy’s and Legendre’s linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT III LAPLACE TRANSFORM 9+3

UNIT IV ANALYTIC FUNCTIONS 9+3
Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: w = z+k, kz, 1/z, z², e⁰ and bilinear transformation.

UNIT V COMPLEX INTEGRATION 9+3
Complex integration – Statement and applications of Cauchy’s integral theorem and Cauchy’s integral formula – Taylor’s and Laurent’s series expansions – Singular points – Residues – Cauchy’s residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:

- The subject helps the students to develop the fundamentals and basic concepts in vector calculus, ODE, Laplace transform and complex functions. Students will be able to solve problems related to engineering applications by using these techniques.

TEXT BOOKS:

REFERENCES:

PH6251 ENGINEERING PHYSICS – II

OBJECTIVES:
- To enrich the understanding of various types of materials and their applications in engineering and technology.

UNIT I CONDUCTING MATERIALS

UNIT II SEMICONDUCTING MATERIALS

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS
Superconductivity: properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High T_c superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT IV DIELECTRIC MATERIALS
UNIT V ADVANCED ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials— Preparation -pulsed laser deposition – chemical vapour deposition – Applications – NLO materials –Birefringence- optical Kerr effect – Classification of Biomaterials and its applications

TOTAL: 45 PERIODS

OUTCOMES:
• The students will have the knowledge on physics of materials and that knowledge will be used by them in different engineering and technology applications.

TEXT BOOKS:

REFERENCES:

CY6251 ENGINEERING CHEMISTRY - II L T P C
3 0 0 3

OBJECTIVES:
• To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
• Principles of electrochemical reactions, redox reactions in corrosion of materials and methods for corrosion prevention and protection of materials.
• Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.
• Preparation, properties and applications of engineering materials.
• Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.

UNIT I WATER TECHNOLOGY
Introduction to boiler feed water-requirements-formation of deposits in steam boilers and heat exchangers- disadvantages (wastage of fuels, decrease in efficiency, boiler explosion) prevention of scale formation -softening of hard water -external treatment zeolite and demineralization - internal treatment- boiler compounds (phosphate, calgon, carbonate, colloidal) - caustic embrittlement -boiler corrosion-priming and foaming- desalination of brackish water —reverse osmosis.

UNIT II ELECTROCHEMISTRY AND CORROSION
UNIT III ENERGY SOURCES
Introduction- nuclear energy- nuclear fission- controlled nuclear fission- nuclear fusion- differences between nuclear fission and fusion- nuclear chain reactions- nuclear reactor power generator-classification of nuclear reactor- light water reactor- breeder reactor- solar energy conversion-solar cells- wind energy. Batteries and fuel cells:Types of batteries- alkaline battery- lead storage battery- nickel-cadmium battery- lithium battery- fuel cell $H_2 - O_2$ fuel cell- applications.

UNIT IV ENGINEERING MATERIALS
Abrasives: definition, classification or types, grinding wheel, abrasive paper and cloth. Refractories: definition, characteristics, classification, properties – refactorininess and RUL, dimensional stability, thermal spalling, thermal expansion, porosity; Manufacture of alumina, magnesite and silicon carbide, Portland cement- manufacture and properties - setting and hardening of cement, special cement- waterproof and white cement—properties and uses. Glass - manufacture, types, properties and uses.

UNIT V FUELS AND COMBUSTION

TOTAL: 45 PERIODS

OUTCOMES:
- The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

REFERENCES:
OBJECTIVES

- To impart basic knowledge on Civil and Mechanical Engineering.
- To explain the materials used for the construction of civilized structures.
- To make the understand the fundamentals of construction of structure.
- To explain the component of power plant units and detailed explanation to IC engines their working principles.
- To explain the R & AC system.

A – CIVIL ENGINEERING

UNIT I SURVEYING AND CIVIL ENGINEERING MATERIALS 15

UNIT II BUILDING COMPONENTS AND STRUCTURES 15
Foundations: Types, Bearing capacity – Requirement of good foundations.

B – MECHANICAL ENGINEERING

UNIT III POWER PLANT ENGINEERING 10

UNIT IV IC ENGINES 10
Internal combustion engines as automobile power plant – Working principle of Petrol and Diesel Engines – Four stroke and two stroke cycles – Comparison of four stroke and two stroke engines – Boiler as a power plant.

UNIT V REFRIGERATION AND AIR CONDITIONING SYSTEM 10

TOTAL: 30 PERIODS

OUTCOMES:

- Ability to explain the usage of construction material and proper selection of construction materials.
- Ability to design building structures.
- Ability to identify the components use in power plant cycle.
- Ability to demonstrate working principles of petrol and diesel engine.
- Ability to explain the components of refrigeration and Air conditioning cycle.
TEXT BOOKS:

REFERENCES:

EE6201 CIRCUIT THEORY L T P C 3 1 0 4

OBJECTIVES:
- To introduce electric circuits and its analysis
- To impart knowledge on solving circuits using network theorems
- To introduce the phenomenon of resonance in coupled circuits.
- To educate on obtaining the transient response of circuits.
- To Phasor diagrams and analysis of three phase circuits

UNIT I BASIC CIRCUITS ANALYSIS 12

UNIT II NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC CIRCUITS 12
- Network reduction: voltage and current division, source transformation – star delta conversion. Thevenins and Novton & Theorem – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem.

UNIT III RESONANCE AND COUPLED CIRCUITS 12

UNIT IV TRANSIENT RESPONSE FOR DC CIRCUITS 12
- Transient response of RL, RC and RLC Circuits using Laplace transform for DC input and A.C. with sinusoidal input – Characterization of two port networks in terms of Z,Y and h parameters.

UNIT V THREE PHASE CIRCUITS 12
- Three phase balanced / unbalanced voltage sources – analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced – phasor diagram of voltages and currents – power and power factor measurements in three phase circuits.

TOTAL : 60 PERIODS
OUTCOMES:
- Ability analyse electrical circuits
- Ability to apply circuit theorems
- Ability to analyse AC and DC Circuits

TEXT BOOKS:

REFERENCES:

GE6262 PHYSICS AND CHEMISTRY LABORATORY – II L T P C
 0 0 2 1

PHYSICS LABORATORY – II

OBJECTIVES:
- To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS
(Any FIVE Experiments)
1. Determination of Young’s modulus by uniform bending method
2. Determination of band gap of a semiconductor
3. Determination of Coefficient of viscosity of a liquid – Poiseuille’s method
4. Determination of Dispersive power of a prism – Spectrometer
5. Determination of thickness of a thin wire – Air wedge method
6. Determination of Rigidity modulus – Torsion pendulum

OUTCOMES:
- The students will have the ability to test materials by using their knowledge of applied physics principles in optics and properties of matter.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. Traveling microscope, meter scale, Knife edge, weights
2. Band gap experimental set up
3. Burette, Capillary tube, rubber tube, stop clock, beaker and weighing balance
4. spectrometer, prism, sodium vapour lamp.
5. Air-wedge experimental set up.
6. Torsion pendulum set up.
 (vernier Caliper, Screw gauge, reading lens are required for most of the experiments)
CHEMISTRY LABORATORY - II

OBJECTIVES:
- To make the student acquire practical skills in the wet chemical and instrumental methods for quantitative estimation of hardness, alkalinity, metal ion content, corrosion in metals and cement analysis.

LIST OF EXPERIMENTS
(Any FIVE Experiments)
1. Determination of alkalinity in water sample
2. Determination of total, temporary & permanent hardness of water by EDTA method
3. Estimation of copper content of the given solution by EDTA method
4. Estimation of iron content of the given solution using potentiometer
5. Estimation of sodium present in water using flame photometer
6. Corrosion experiment – weight loss method
7. Conductometric precipitation titration using BaCl₂ and Na₂SO₄

TOTAL: 30 PERIODS

OUTCOMES:
- The students will be conversant with hands-on knowledge in the quantitative chemical analysis of water quality related parameters, corrosion measurement and cement analysis.

REFERENCES:
- Laboratory classes on alternate weeks for Physics and Chemistry.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. Potentiometer - 5 Nos
2. Flame photo meter - 5 Nos
3. Weighing Balance - 5 Nos
4. Conductivity meter - 5 Nos

Common Apparatus: Pipette, Burette, conical flask, percelain tile, dropper (30 Nos each)
OBJECTIVES:
The Students should be made to
- Be exposed to Unix shell commands
- Be familiar with an editor on Unix
- Learn to program in Shell script
- Learn to write C programme for Unix platform

LIST OF EXPERIMENTS

1. UNIX COMMANDS 15
Study of Unix OS - Basic Shell Commands - Unix Editor

2. SHELL PROGRAMMING 15
Simple Shell program - Conditional Statements - Testing and Loops

3. C PROGRAMMING ON UNIX 15
Dynamic Storage Allocation-Pointers-Functions-File Handling

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course the students should be able to:
- Use Shell commands
- Design of Implement Unix shell scripts
- Write and execute C programs on Unix

HARDWARE / SOFTWARE REQUIREMENTS FOR A BATCH OF 30 STUDENTS

Hardware
- UNIX Clone Server
- 33 Nodes (thin client or PCs)
- Printer – 3 Nos.

Software
- OS – UNIX Clone (33 user license or License free Linux)
- Compiler - C
OBJECTIVES:

- To provide practical experience with simulation of electrical circuits and verifying circuit theorems.

LIST OF EXPERIMENTS

1. Experimental verification of Kirchhoff’s voltage and current laws
2. Experimental verification of network theorems (Thevenin, Norton, Superposition and maximum power transfer Theorem).
3. Study of CRO and measurement of sinusoidal voltage, frequency and power factor.
4. Experimental determination of time constant of series R-C electric circuits.
5. Experimental determination of frequency response of RLC circuits.
6. Design and Simulation of series resonance circuit.
7. Design and Simulation of parallel resonant circuits.
8. Simulation of low pass and high pass passive filters.
9. Simulation of three phase balanced and unbalanced star, delta networks circuits.
10. Experimental determination of power in three phase circuits by two-watt meter method.
11. Calibration of single phase energy meter.
12. Determination of two port network parameters.

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to understand and apply circuit theorems and concepts in engineering applications.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

2. Function Generator (1 MHz) - 10 Nos.
4. Oscilloscope (20 MHz) - 10 Nos.
5. Digital Storage Oscilloscope (20 MHz) – 1 No.
6. Circuit Simulation Software (5 Users) (Pspice / Matlab /other Equivalent software Package) with PC (5 Nos.) and Printer (1 No.)
7. AC/DC - Voltmeters (10 Nos.), Ammeters (10 Nos.) and Multi-meters (10 Nos.)
9. Decade Resistance Box, Decade Inductance Box, Decade Capacitance Box Each - 6 Nos.
10. Circuit Connection Boards - 10 Nos.

Necessary Quantities of Resistors, Inductors, Capacitors of various capacities (Quarter Watt to 10 Watt)
OBJECTIVES:
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+3
Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange’s linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES 9+3

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+3
Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

UNIT IV FOURIER TRANSFORMS 9+3

UNIT V Z-TRANSFORMS AND DIFFERENCE EQUATIONS 9+3

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
- The understanding of the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS:
REFERENCES:

EE6301 DIGITAL LOGIC CIRCUITS

OBJECTIVES:
- To study various number systems, simplify the logical expressions using Boolean functions
- To study implementation of combinational circuits
- To design various synchronous and asynchronous circuits.
- To introduce asynchronous sequential circuits and PLCs
- To introduce digital simulation for development of application oriented logic circuits.

UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES
Review of number systems, binary codes, error detection and correction codes (Parity and Hamming code)
Digital Logic Families, comparison of RTL, DTL, TTL, ECL and MOS families - operation, characteristics of digital logic family.

UNIT II COMBINATIONAL CIRCUITS
Combinational logic - representation of logic functions-SOP and POS forms, K-map representations
minimization using K maps - simplification and implementation of combinational logic - multiplexers
and demultiplexers - code converters, adders, subtractors.

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS
Sequential logic- SR, JK, D and T flip flops - level triggering and edge triggering - counters
asynchronous and synchronous type - Modulo counters - Shift registers - design of synchronous
sequential circuits – Moore and Melay models- Counters, state diagram; state reduction; state
assignment.

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABLE LOGIC DEVICES
Asynchronous sequential logic circuits-Transition table, flow table-race conditions, hazards & errors in
digital circuits; analysis of asynchronous sequential logic circuits-introduction to Programmable Logic Devices: PROM – PLA –PAL.
UNIT V VHDL

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
- Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

REFERENCES:

EE6302 ELECTROMAGNETIC THEORY L T P C
3 1 0 4

OBJECTIVES:
- To introduce the basic mathematical concepts related to electromagnetic vector fields
- To impart knowledge on the concepts of electrostatics, electrical potential, energy density and their applications.
- To impart knowledge on the concepts of magnetostatics, magnetic flux density, scalar and vector potential and its applications.
- To impart knowledge on the concepts of Faraday’s law, induced emf and Maxwell’s equations
- To impart knowledge on the concepts of Concepts of electromagnetic waves and Pointing vector.

UNIT I ELECTROSTATICS – I
Sources and effects of electromagnetic fields – Coordinate Systems – Vector fields – Gradient, Divergence, Curl – theorems and applications - Coulomb’s Law – Electric field intensity – Field due to discrete and continuous charges – Gauss’s law and applications.
UNIT II ELECTROSTATICS – II
Electric potential – Electric field and equipotential plots, Uniform and Non-Uniform field, Utilization factor – Electric field in free space, conductors, dielectrics - Dielectric polarization - Dielectric strength - Electric field in multiple dielectrics – Boundary conditions, Poisson’s and Laplace’s equations, Capacitance, Energy density, Applications.

UNIT III MAGNETOSTATICS
Lorentz force, magnetic field intensity (H) – Biot–Savart’s Law - Ampere’s Circuit Law – H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – B in free space, conductor, magnetic materials – Magnetization, Magnetic field in multiple media – Boundary conditions, scalar and vector potential, Poisson’s Equation, Magnetic force, Torque, Inductance, Energy density, Applications.

UNIT IV ELECTRODYNAMIC FIELDS

UNIT V ELECTROMAGNETIC WAVES

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
• Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
To the study of nature and the facts about environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth’s interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY
12
Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment – concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION
10
Definition – causes, effects and control measures of: (a) Air pollution (Atmospheric chemistry-Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere - formation of smog, PAN, acid rain, oxygen and ozone chemistry; Mitigation procedures- Control of particulate and gaseous emission, Control of SO$_2$, NO$_X$, CO and HC) (b) Water pollution : Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters – physical, chemical and biological; absorption of heavy metals - Water treatment processes. (c) Soil pollution - soil waste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution – pollution case studies – Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES
10
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Introduction to Environmental Biochemistry: Proteins –Biochemical
degradation of pollutants, Bioconversion of pollutants. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT
Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

OUTCOMES:
Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.

- Public awareness of environmental is at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions
- Development and improvement in std. of living has lead to serious environmental disasters

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
The student should be made to:
• Be familiar with the structure of basic electronic devices.
• Be exposed to the operation and applications of electronic devices.

UNIT I PN JUNCTION DEVICES
PN junction diode –structure, operation and V-I characteristics, diffusion and transient capacitance-
Rectifiers – Half Wave and Full Wave Rectifier,– Display devices- LED, Laser diodes- Zener diode-
characteristics-Zener Reverse characteristics – Zener as regulator

UNIT II TRANSISTORS
BJT, JFET, MOSFET- structure, operation, characteristics and Biasing UJT, Thyristor and IGBT -
Structure and characteristics.

UNIT III AMPLIFIERS
BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –
MOSFET small signal model– Analysis of CS and Source follower – Gain and frequency response-
High frequency analysis.

UNIT IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER
BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET
input stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers –Types (Qualitative analysis).

UNIT V FEEDBACK AMPLIFIERS AND OSCILLATORS
Advantages of negative feedback – voltage / current, series , Shunt feedback –positive feedback –
Condition for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
• To explain the structure of the basic electronic devices.
• To design applications using the basic electronic devices.

TEXT BOOKS:

REFERENCES:
5. Robert B. Northrop, “Analysis and Application of Analog Electronic Circuits to Biomedical
OBJECTIVES:

- To study the IC fabrication procedure.
- To study characteristics; realize circuits; design for signal analysis using Op-amp ICs.
- To study the applications of Op-amp.
- To study internal functional blocks and the applications of special ICs like Timers, PLL circuits, regulator Circuits, ADCs.

UNIT I IC FABRICATION

IC classification, fundamental of monolithic IC technology, epitaxial growth, masking and etching, diffusion of impurities. Realisation of monolithic ICs and packaging. Fabrication of diodes, capacitance, resistance and FETs.

UNIT II CHARACTERISTICS OF OPAMP

Ideal OP-AMP characteristics, DC characteristics, AC characteristics, differential amplifier; frequency response of OP-AMP; Basic applications of op-amp – Inverting and Non-inverting Amplifiers-V/I & I/V converters, summer, differentiator and integrator.

UNIT III APPLICATIONS OF OPAMP

Instrumentation amplifier, Log and Antilog Amplifiers, first and second order active filters, comparators, multivibrators, waveform generators, clippers, clamps, peak detector, S/H circuit, D/A converter (R-2R ladder and weighted resistor types), A/D converters using opamps.

UNIT IV SPECIAL ICs

Functional block, characteristics & application circuits with 555 Timer Ic-566 voltage controlled oscillator Ic; 565-phase lock loop Ic, Analog multiplier ICs.

UNIT V APPLICATION ICs

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

REFERENCES:

OBJECTIVES:
To enable the students to understand the behavior of semiconductor device based on experimentation

LIST OF EXPERIMENTS:
1. Characteristics of Semiconductor diode and Zener diode
2. Characteristics of a NPN Transistor under common emitter, common collector and common base configurations
3. Characteristics of JFET (Draw the equivalent circuit)
4. Characteristics of UJT and generation of saw tooth waveforms
5. Design and Frequency response characteristics of a Common Emitter amplifier
6. Characteristics of photo diode & photo transistor, Study of light activated relay circuit
7. Design and testing of RC phase shift, LC oscillators
8. Single Phase half-wave and full wave rectifiers with inductive and capacitive filters
9. Differential amplifiers using FET
10. Study of CRO for frequency and phase measurements
11. Astable and Monostable multivibrators
12. Realization of passive filters

TOTAL : 45 PERIODS

OUTCOMES:
• Ability to understand and analyse, linear and digital electronic circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. Semiconductor devices like Diode, Zener Diode, NPN Transistors, JFET, UJT, Photo diode, Photo Transistor
2. Resistors, Capacitors and inductors
3. Necessary digital IC 8
4. Function Generators
5. Regulated 3 output Power Supply 5, ± 15V
6. CRO
7. Storage Oscilloscope
8. Bread boards
9. Atleast one demo module each for the listed equipments.
10. Component data sheets to be provided
OBJECTIVES:
Working Practice in simulators / CAD Tools / Experiment test bench to learn design, testing and characterizing of circuit behaviour with digital and analog ICs.

LIST OF EXPERIMENTS:
1. Implementation of Boolean Functions, Adder/ Subtractor circuits.
2. Code converters: Excess-3 to BCD and Binary to Gray code converter and vice-versa
3. Parity generator and parity checking
4. Encoders and Decoders
5. Counters: Design and implementation of 4-bit modulo counters as synchronous and asynchronous types using FF IC’s and specific counter IC.
6. Shift Registers: Design and implementation of 4-bit shift registers in SISO, SIPO, PISO, PIPO modes using suitable IC’s.
7. Study of multiplexer and demultiplexer
8. Timer IC application: Study of NE/SE 555 timer in Astable, Monostable operation.
10. Study of VCO and PLL ICs:
 i. Voltage to frequency characteristics of NE/ SE 566 IC.
 ii. Frequency multiplication using NE/SE 565 PLL IC.

TOTAL : 45 PERIODS

OUTCOMES:
- Ability to understand and analyse, linear and digital electronic circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

<table>
<thead>
<tr>
<th>S.No</th>
<th>Name of the equipments / Components</th>
<th>Quantity Required</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dual ,(0-30V) variable Power Supply</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>CRO</td>
<td>9</td>
<td>30MHz</td>
</tr>
<tr>
<td>3</td>
<td>Digital Multimeter</td>
<td>10</td>
<td>Digital</td>
</tr>
<tr>
<td>4</td>
<td>Function Generator</td>
<td>8</td>
<td>1 MHz</td>
</tr>
<tr>
<td>5</td>
<td>IC Tester (Analog)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bread board</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Computer (PSPICE installed)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Consumables (Minimum of 25 Nos. each)

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IC 741/ IC NE555/566/565</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Digital IC types</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>LED</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>LM317</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>LM723</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>ICSG3524 / SG3525</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Transistor – 2N3391</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>Diodes, IN4001, BY126</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Zener diodes</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>Potentiometer</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Step-down transformer 230V/12-0-12V</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Capacitor</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Resistors 1/4 Watt Assorted</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>Single Strand Wire</td>
<td></td>
</tr>
</tbody>
</table>

MA6459 NUMERICAL METHODS

L T P C

3 1 0 4

OBJECTIVES:

- This course aims at providing the necessary basic concepts of a few numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology

UNIT I SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

10+3

UNIT II INTERPOLATION AND APPROXIMATION

8+3

Interpolation with unequal intervals - Lagrange’s interpolation – Newton’s divided difference interpolation – Cubic Splines - Interpolation with equal intervals - Newton’s forward and backward difference formulae.

UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION

9+3

Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s method - Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s 1/3 rules.
UNIT IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS 9+3

UNIT V BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS 9+3
Finite difference methods for solving two-point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace’s and Poisson’s equations on rectangular domain – One dimensional heat flow equation by explicit and implicit (Crank Nicholson) methods – One dimensional wave equation by explicit method.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
• The students will have a clear perception of the power of numerical techniques, ideas and would be able to demonstrate the applications of these techniques to problems drawn from industry, management and other engineering fields.

TEXT BOOKS:

REFERENCES:

EE6401 ELECTRICAL MACHINES – I L T P C
3 1 0 4

OBJECTIVES:
• To introduce techniques of magnetic-circuit analysis and introduce magnetic materials
• To familiarize the constructional details, the principle of operation, prediction of performance, the methods of testing the transformers and three phase transformer connections.
• To study the working principles of electrical machines using the concepts of electromechanical energy conversion principles and derive expressions for generated voltage and torque developed in all Electrical Machines.
• To study the working principles of DC machines as Generator types, determination of their no-load/load characteristics, starting and methods of speed control of motors.
• To estimate the various losses taking place in D.C. Motor and to study the different testing methods to arrive at their performance.
UNIT I MAGNETIC CIRCUITS AND MAGNETIC MATERIALS

UNIT II TRANSFORMERS

UNIT III ELECTROMECHANICAL ENERGY CONVERSION AND CONCEPTS IN ROTATING MACHINES
Energy in magnetic system – Field energy and coenergy-force and torque equations – singly and multiply excited magnetic field systems-mmf of distributed windings – Winding Inductances-, magnetic fields in rotating machines – rotating mmf waves – magnetic saturation and leakage fluxes.

UNIT IV DC GENERATORS

UNIT V DC MOTORS
Principle and operations - types of DC Motors – Speed Torque Characteristics of DC Motors-starting and speed control of DC motors –Plugging, dynamic and regenerative braking- testing and efficiency – Retardation test- Swinburne’s test and Hopkinson’s test - Permanent magnet dc motors(PMDC)-DC Motor applications.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
• Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To get a clear understanding of object-oriented concepts.
- To understand object oriented programming through C++.

UNIT I OVERVIEW
Why Object-Oriented Programming in C++ - Native Types and Statements –Functions and Pointers- Implementing ADTs in the Base Language.

UNIT II BASIC CHARACTERISTICS OF OOP
Data Hiding and Member Functions- Object Creation and Destruction- Polymorphism data abstraction: Iterators and Containers.

UNIT III ADVANCED PROGRAMMING

UNIT IV OVERVIEW OF JAVA
Data types, variables and arrays, operators, control statements, classes, objects, methods – Inheritance

UNIT V EXCEPTION HANDLING
Packages and Interfaces, Exception handling, Multithreaded programming, Strings, Input/Output

TOTAL : 45 PERIODS

OUTCOMES:
- Gain the basic knowledge on Object Oriented concepts.
- Ability to develop applications using Object Oriented Programming Concepts.
- Ability to implement features of object oriented programming to solve real world problems.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To develop expressions for the computation of transmission line parameters.
- To obtain the equivalent circuits for the transmission lines based on distance and operating voltage for determining voltage regulation and efficiency. Also to improve the voltage profile of the transmission system.
- To analyses the voltage distribution in insulator strings and cables and methods to improve the same.
- To understand the operation of the different distribution schemes.

UNIT I STRUCTURE OF POWER SYSTEM

Structure of electric power system: generation, transmission and distribution; Types of AC and DC distributors – distributed and concentrated loads – interconnection – EHVAC and HVDC transmission - Introduction to FACTS.

UNIT II TRANSMISSION LINE PARAMETERS

Parameters of single and three phase transmission lines with single and double circuits - Resistance, inductance and capacitance of solid, stranded and bundled conductors, Symmetrical and unsymmetrical spacing and transposition - application of self and mutual GMD; skin and proximity effects - interference with neighboring communication circuits - Typical configurations, conductor types and electrical parameters of EHV lines, corona discharges.

UNIT III MODELLING AND PERFORMANCE OF TRANSMISSION LINES

Classification of lines - short line, medium line and long line - equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance; transmission efficiency and voltage regulation, real and reactive power flow in lines, Power - circle diagrams, surge impedance loading, methods of voltage control; Ferranti effect.

UNIT IV INSULATORS AND CABLES

UNIT V MECHANICAL DESIGN OF LINES AND GROUNDING

Mechanical design of transmission line – sag and tension calculations for different weather conditions, Tower spotting, Types of towers, Substation Layout (AIS, GIS), Methods of grounding.

TOTAL : 45 PERIODS

OUTCOMES:

- Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

REFERENCES:

EE6403 DISCRETE TIME SYSTEMS AND SIGNAL PROCESSING L T P C

TOTAL : 45 PERIODS
OUTCOMES:

- Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.

TEXT BOOKS:

REFERENCES:

EE6404 MEASUREMENTS AND INSTRUMENTATION

OBJECTIVES:

- To introduce the basic functional elements of instrumentation
- To introduce the fundamentals of electrical and electronic instruments
- To educate on the comparison between various measurement techniques
- To introduce various storage and display devices
- To introduce various transducers and the data acquisition systems

UNIT I INTRODUCTION

Functional elements of an instrument – Static and dynamic characteristics – Errors in measurement – Statistical evaluation of measurement data – Standards and calibration.

UNIT II ELECTRICAL AND ELECTRONICS INSTRUMENTS

UNIT III COMPARISON METHODS OF MEASUREMENTS

UNIT IV STORAGE AND DISPLAY DEVICES
Magnetic disk and tape – Recorders, digital plotters and printers, CRT display, digital CRO, LED, LCD & dot matrix display – Data Loggers.

UNIT V TRANSDUCERS AND DATA ACQUISITION SYSTEMS

TOTAL :45 PERIODS

OUTCOMES:
• Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

REFERENCES:

CS6461 OBJECT ORIENTED PROGRAMMING LABORATORY

OBJECTIVES:
• To get a clear understanding of object-oriented concepts.
• To understand object oriented programming through C++ & JAVA.

LIST OF EXPERIMENTS:
C++:
1. program using functions
 • functions with default arguments
 • implementation of call by value, address, reference
2. simple classes for understanding objects, member functions & constructors
 • classes with primitive data members,
 • classes with arrays as data members
 • classes with pointers as data members
 • classes with constant data members
 • classes with static member functions
3. compile time polymorphism
 • operator overloading
function overloading
4. run time polymorphism
 • inheritance
 • virtual functions
 • virtual base classes
 • templates
5. file handling
 • sequential access
 • random access

JAVA:
6. simple java applications
 • for understanding references to an instant of a class
 • handling strings in JAVA
7. simple package creation
 • developing user defined packages in java
8. interfaces
 • developing user defined interfaces
 • use predefined interfaces
9. threading
 • creation of threading in java applications
 • multi threading
10. exception handling mechanism in java
 • handling predefined exceptions
 • handling user defined exceptions

TOTAL : 45 PERIODS

OUTCOMES:
• Gain the basic knowledge on Object Oriented concepts.
• Ability to develop applications using Object Oriented Programming Concepts.
• Ability to implement features of object oriented programming to solve real world problems.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C++ compiler 30 Nos.

(or)

Server with C++ compiler supporting 30 terminals or more.
OBJECTIVES:
To expose the students to the operation of D.C. machines and transformers and give them experimental skill.

LIST OF EXPERIMENTS:

1. Open circuit and load characteristics of DC shunt generator- critical resistance and critical speed.
2. Load characteristics of DC compound generator with differential and cumulative connections.
3. Load test on DC shunt and compound motor.
4. Load test on DC series motor.
5. Swinburne’s test and speed control of DC shunt motor.
7. Load test on single-phase transformer and three phase transformers.
8. Open circuit and short circuit tests on single phase transformer.
9. Polarity Test and Sumpner’s test on single phase transformers.
10. Separation of no-load losses in single phase transformer.
11. Study of starters and 3-phase transformers connections

TOTAL: 45 PERIODS

OUTCOMES:

- Ability to model and analyze electrical apparatus and their application to power system

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. DC Shunt Motor with Loading Arrangement – 3 nos
2. DC Shunt Motor Coupled With Three phase Alternator – 1 No.
3. Single Phase Transformer – 4 nos
4. DC Series Motor with Loading Arrangement – 1 No.
5. DC compound Motor with Loading Arrangement – 1 No.
6. Three Phase Induction Motor with Loading Arrangement – 2 nos
7. Single Phase Induction Motor with Loading Arrangement – 1 No.
8. DC Shunt Motor Coupled With DC Compound Generator – 2 nos
9. DC Shunt Motor Coupled With DC Shunt Motor – 1 No.
10. Tachometer -Digital/Analog – 8 nos
11. Single Phase Auto Transformer – 2 nos
12. Three Phase Auto Transformer – 1 No.
13. Single Phase Resistive Loading Bank – 2 nos
14. Three Phase Resistive Loading Bank. – 2 nos
15. SPST switch – 2 nos
OBJECTIVES:
• To model the power system under steady state operating condition.
• To apply numerical methods to solve the power flow problem.
• To model and analyze the system under faulted conditions.
• To model and analyze the transient behaviour of power system when it is subjected to
 a fault.

UNIT I INTRODUCTION 9
Need for system planning and operational studies – basic components of a power system.-Introduction to restructuring - Single line diagram – per phase and per unit analysis – Generator - transformer – transmission line and load representation for different power system studies.- Primitive network - construction of Y-bus using inspection and singular transformation methods – z-bus.

UNIT II POWER FLOW ANALYSIS 9

UNIT III FAULT ANALYSIS – BALANCED FAULTS 9

UNIT IV FAULT ANALYSIS – UNBALANCED FAULTS 9
Introduction to symmetrical components – sequence impedances – sequence circuits of synchronous machine, transformer and transmission lines - sequence networks analysis of single line to ground, line to line and double line to ground faults using Thevenin’s theorem and Z-bus matrix.

UNIT V STABILITY ANALYSIS 9

OUTCOMES:
• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

REFERENCES:

EE6502 MICRORPROCESSORS AND MICROCONTROLLERS L T P C 3 0 0 3

OBJECTIVES:

- To study the Architecture of uP8085 & uC 8051
- To study the addressing modes & instruction set of 8085 & 8051.
- To introduce the need & use of Interrupt structure 8085 & 8051.
- To develop skill in simple applications development with programming 8085 & 8051
- To introduce commonly used peripheral / interfacing

UNIT I 8085 PROCESSOR

UNIT II PROGRAMMING OF 8085 PROCESSOR

Instruction -format and addressing modes – Assembly language format – Data transfer, data manipulation& control instructions – Programming: Loop structure with counting & Indexing – Look up table - Subroutine instructions - stack.

UNIT III 8051 MICRO CONTROLLER

UNIT IV PERIPHERAL INTERFACING

Study on need, Architecture, configuration and interfacing, with ICs: 8255 , 8259 , 8254,8237,8251, 8279 , - A/D and D/A converters &Interfacing with 8085& 8051.

UNIT V MICRO CONTROLLER PROGRAMMING & APPLICATIONS

TOTAL : 45 PERIODS

OUTCOMES:

- Ability to understand and analyse, linear and digital electronic circuits.
- To understand and apply computing platform and software for engineering problems.
TEXT BOOKS:

REFERENCES:

ME6701 POWER PLANT ENGINEERING

OBJECTIVES:
• Providing an overview of Power Plants and detailing the role of Mechanical Engineers in their operation and maintenance.

UNIT I COAL BASED THERMAL POWER PLANTS

UNIT II DIESEL, GAS TURBINE AND COMBINED CYCLE POWER PLANTS

UNIT III NUCLEAR POWER PLANTS

UNIT IV POWER FROM RENEWABLE ENERGY
Hydro Electric Power Plants – Classification, Typical Layout and associated components including Turbines. Principle, Construction and working of Wind, Tidal, Solar Photo Voltaic (SPV), Solar Thermal, Geo Thermal, Biogas and Fuel Cell power systems.

UNIT V ENERGY, ECONOMIC AND ENVIRONMENTAL ISSUES OF POWER PLANTS
Power tariff types, Load distribution parameters, load curve, Comparison of site selection criteria, relative merits & demerits, Capital & Operating Cost of different power plants. Pollution control technologies including Waste Disposal Options for Coal and Nuclear Power Plants.
OUTCOMES:
- Upon completion of this course, the Students can able to understand different types of power plant, and its functions and their flow lines and issues related to them.
- Analyse and solve energy and economic related issues in power sectors.

TEXT BOOK:

REFERENCES:

EE6503 POWER ELECTRONICS

OBJECTIVES:
- To get an overview of different types of power semiconductor devices and their switching characteristics.
- To understand the operation, characteristics and performance parameters of controlled rectifiers.
- To study the operation, switching techniques and basics topologies of DC-DC switching regulators.
- To learn the different modulation techniques of pulse width modulated inverters and to understand harmonic reduction methods.
- To study the operation of AC voltage controller and various configurations.

UNIT I POWERSEMI-CONDUCTOR DEVICES 9
Study of switching devices, Diode, SCR, TRIAC, GTO, BJT, MOSFET, IGBT-Static and Dynamic characteristics - Triggering and commutation circuit for SCR- Design of Driver and snubber circuit.

UNIT II PHASE-CONTROLLED CONVERTERS 9
2-pulse,3-pulse and 6-pulse converters- performance parameters –Effect of source inductance— Gate Circuit Schemes for Phase Control–Dual converters.

UNIT III DC TO DC CONVERTER 9
UNIT IV INVERTERS
9
Single phase and three phase voltage source inverters (both 120° mode and 180° mode) – Voltage & harmonic control – PWM techniques: Sinusoidal PWM, modified sinusoidal PWM - multiple PWM – Introduction to space vector modulation – Current source inverter.

UNIT V AC TO AC CONVERTERS
9
Single phase and Three phase AC voltage controllers – Control strategy- Power Factor Control – Multistage sequence control – single phase and three phase cyclo converters – Introduction to Matrix converters.

OUTCOMES:
- Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

REFERENCES:

EE6504 ELECTRICAL MACHINES – II

OBJECTIVES:
- To impart knowledge on Construction and performance of salient and non – salient type synchronous generators.
- To impart knowledge on Principle of operation and performance of synchronous motor.
- To impart knowledge on Construction, principle of operation and performance of induction machines.
- To impart knowledge on Starting and speed control of three-phase induction motors.
- To impart knowledge on Construction, principle of operation and performance of single phase induction motors and special machines.

UNIT I SYNCHRONOUS GENERATOR
9
Constructional details – Types of rotors – winding factors- emf equation – Synchronous reactance – Armature reaction – Phasor diagrams of non salient pole synchronous generator connected to infinite bus – Synchronizing and parallel operation – Synchronizing torque - Change of excitation and
mechanical input - Voltage regulation – EMF, MMF, ZPF and A.S.A methods – steady state power-
angle characteristics– Two reaction theory –slip test -short circuit transients - Capability Curves

UNIT II SYNCHRONOUS MOTOR
Principle of operation – Torque equation – Operation on infinite bus bars - V and Inverted V curves –
Power input and power developed equations – Starting methods – Current loci for constant power
input, constant excitation and constant power developed-Hunting – natural frequency of oscillations –
damper windings- synchronous condenser.

UNIT III THREE PHASE INDUCTION MOTOR
Constructional details – Types of rotors -- Principle of operation – Slip –cogging and crawling-
Equivalent circuit – Torque-Slip characteristics - Condition for maximum torque – Losses and
efficiency – Load test - No load and blocked rotor tests - Circle diagram – Separation of losses –

UNIT IV STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION
MOTOR
Need for starting – Types of starters – DOL, Rotor resistance, Autotransformer and Star-delta starters
– Speed control – Voltage control, Frequency control and pole changing – Cascaded connection-V/f
control – Slip power recovery scheme-Braking of three phase induction motor: Plugging, dynamic
braking and regenerative braking.

UNIT V SINGLE PHASE INDUCTION MOTORS AND SPECIAL MACHINES
Constructional details of single phase induction motor – Double field revolving theory and operation –
Equivalent circuit – No load and blocked rotor test – Performance analysis – Starting methods of
single-phase induction motors – Capacitor-start capacitor run Induction motor- Shaded pole induction
motor - Linear induction motor – Repulsion motor - Hysteresis motor - AC series motor- Servo motors-
Stepper motors - introduction to magnetic levitation systems.

OUTCOMES:
- Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:
 Company Ltd, 2002.

REFERENCES:
1. M.N.Bandyopadhay, Electrical Machines Theory and Practice, PHI Learning PVT LTD.,
 New Delhi, 2009.
OBJECTIVES:
- To understand the use of transfer function models for analysis physical systems and introduce the control system components.
- To provide adequate knowledge in the time response of systems and steady state error analysis.
- To accord basic knowledge in obtaining the open loop and closed–loop frequency responses of systems.
- To introduce stability analysis and design of compensators.
- To introduce state variable representation of physical systems and study the effect of state feedback.

UNIT I SYSTEMS AND THEIR REPRESENTATION 9

UNIT II TIME RESPONSE 9

UNIT III FREQUENCY RESPONSE 9
Frequency response – Bode plot – Polar plot – Determination of closed loop response from open loop response - Correlation between frequency domain and time domain specifications- Effect of Lag, lead and lag-lead compensation on frequency response - Analysis.

UNIT IV STABILITY AND COMPENSATOR DESIGN 9
Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria – Lag, lead and lag-lead networks – Lag/Lead compensator design using bode plots.

UNIT V STATE VARIABLE ANALYSIS 9

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
- Ability to understand and apply basic science, circuit theory, theory control theory Signal processing and apply them to electrical engineering problems.

TEXT BOOKS:

REFERENCES:
EE6511 CONTROL AND INSTRUMENTATION LABORATORY

OBJECTIVES:
To provide knowledge on analysis and design of control system along with basics of instrumentation

LIST OF EXPERIMENTS:

CONTROLSYSTEMS:
1. P, PI and PID controllers
2. Stability Analysis
4. Design of Lag, Lead and Lag-Lead Compensators
5. Position Control Systems
6. Synchro-Transmitter- Receiver and Characteristics
7. Simulation of Control Systems by Mathematical development tools.

INSTRUMENTATION:
8. Bridge Networks –AC and DC Bridges
9. Dynamics of Sensors/Transducers a. Temperature
 b. Pressure
 c. Displacement
 d. Optical
 e. Strain f. Flow
11. Signal Conditioning a. Instrumentation Amplifier
 b. Analog – Digital and Digital – Analog converters (ADC and DACs)

TOTAL : 45 PERIODS

OUTCOMES:
• Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory
control theory and apply them to electrical engineering problems.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CONTROL SYSTEMS:
1. PID kit – 1 No.
 DSO – 1 No.
 CRO Probe – 2 nos
2. Personal computers
3. DC motor – 1 No.
 Generator – 1 No. Rheostats – 2 nos
 Ammeters Voltmeters
 Connecting wires (3/20)
4. CRO 30MHz – 1 No.
 2MHz Function Generator – 1No.
5. Position Control Systems Kit (with manual) – 1 No., Tacho Generator Coupling set
6. AC Synchro transmitter& receiver – 1No.
 Digital multi meters

INSTRUMENTATION:
7. R, L, C Bridge kit (with manual)
8. a) Electric heater – 1No.
 Thermometer – 1No.
 Thermistor (silicon type) RTD nickel type – 1No.
 b) 30 psi Pressure chamber (complete set) – 1No. Current generator (0 – 20mA)
 Air foot pump – 1 No. (with necessary connecting tubes)
 c) LVDT20mm core length movable type – 1No. CRO 30MHz – 1No.
 d) Optical sensor – 1 No. Light source
 e) Strain Gauge Kit with Handy lever beam – 1No.
 100gm weights – 10 nos
 f) Flow measurement Trainer kit – 1 No.
 (1/2 HP Motor, Water tank, Digital Milliammeter, complete set)
 Watthour meter (energy meter) – 1No. Ammeter
 Voltmeter Rheostat Stop watch
 Connecting wires (3/20)
10. IC Transistor kit – 1No.
OBJECTIVES:

- To provide opportunities to learners to practice their communicative skills to make them become proficient users of English.
- To enable learners to fine-tune their linguistic skills (LSRW) with the help of technology to communicate globally.
- To enhance the performance of learners at placement interviews and group discussions and other recruitment procedures.

UNIT I LISTENING/VIEWING 10
Listening and note-taking – Listening to telephonic conversations – Ted talks – Inspiring Speeches – Watching documentaries on personalities, places, socio-cultural events, TV news programmes and discussions to answer different kinds questions, viz., identifying key idea and comprehension questions… so on.

UNIT II SPEAKING 12

UNIT III READING 10
Different genres of text (literature, media, technical) for comprehension – Reading strategies like note-making – reading graphs, charts and graphic organizer – Sequencing sentences – reading online sources like e-books, e-journals and e-newspapers.

UNIT IV WRITING 12

UNIT V VOCABULARY 8
Idioms and Phrases – Proverbs – Collocations – Chunks of language.

UNIT VI GRAMMAR 8
Sentence structures – Subject-Verb agreement – Pronoun-Antecedent agreement – Tense forms – Active and passive voices – Direct and Indirect speeches – Cohesive devices.

TOTAL: 60 PERIODS

TEACHING METHODS:
1. To be totally learner-centric with minimum teacher intervention as the course revolves around practice.
2. Suitable audio/video samples from Podcast/YouTube to be used for illustrative purposes.
3. Portfolio approach for writing to be followed. Learners are to be encouraged to blog, tweet, text and email employing appropriate language.
4. GD/Interview/Role Play/Debate could be conducted off the laboratory (in a regular classroom) but learners are to be exposed to telephonic interview and video conferencing.
5. Learners are to be assigned to read/write/listen/view materials outside the classroom as well for graining proficiency and better participation in the class.
Lab Infrastructure:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Description of Equipment (minimum configuration)</th>
<th>Qty Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Server</td>
<td>1 No.</td>
</tr>
<tr>
<td></td>
<td>• PIV System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 GB RAM / 40 GB HDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OS: Win 2000 server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Audio card with headphones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• JRE 1.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Client Systems</td>
<td>60 Nos.</td>
</tr>
<tr>
<td></td>
<td>• PIII System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 256 or 512 MB RAM / 40 GB HDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OS: Win 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Audio card with headphones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• JRE 1.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Handicam</td>
<td>1 No.</td>
</tr>
<tr>
<td>4</td>
<td>Television 46”</td>
<td>1 No.</td>
</tr>
<tr>
<td>5</td>
<td>Collar mike</td>
<td>1 No.</td>
</tr>
<tr>
<td>6</td>
<td>Cordless mike</td>
<td>1 No.</td>
</tr>
<tr>
<td>7</td>
<td>Audio Mixer</td>
<td>1 No.</td>
</tr>
<tr>
<td>8</td>
<td>DVD recorder/player</td>
<td>1 No.</td>
</tr>
<tr>
<td>9</td>
<td>LCD Projector with MP3/CD/DVD provision for Audio/video facility</td>
<td>1 No.</td>
</tr>
</tbody>
</table>

Evaluation:

Internal: 20 marks

Record maintenance: Students should write a report on a regular basis on the activities conducted, focusing on the details such as the description of the activity, ideas emerged, learning outcomes and so on. At the end of the semester records can be evaluated out of 20 marks.

External: 80 marks

- Online Test - 35 marks
- Interview - 15 marks
- Presentation - 15 marks
- Group Discussion - 15 marks

Note on Internal and External Evaluation:

1. Interview – mock interview can be conducted on one-on-one basis.
2. Speaking – example for role play:
 a. Marketing engineer convincing a customer to buy his product.
 b. Telephonic conversation- fixing an official appointment / placing an order / enquiring and so on.
3. Presentation – should be extempore on simple topics
4. Discussion – topics of different kinds; general topics, case studies and abstract concept

OUTCOMES:

At the end of the course, learners should be able to

- Take international examination such as IELTS and TOEFL
- Make presentations and Participate in Group Discussions.
- Successfully answer questions in interviews.
REFERENCES:

WEB SOURCES:
www.humanresources.about.com
www.careerride.com

EE6512 ELECTRICAL MACHINES LABORATORY - II

OBJECTIVES:
To expose the students to the operation of synchronous machines and induction motors and give them experimental skill.

LIST OF EXPERIMENTS:
1. Regulation of three phase alternator by emf and mmf methods.
2. Regulation of three phase alternator by ZPF and ASA methods.
3. Regulation of three phase salient pole alternator by slip test.
4. Measurements of negative sequence and zero sequence impedance of alternators.
5. V and Inverted V curves of Three Phase Synchronous Motor.
7. No load and blocked rotor test on three-phase induction motor(Determination of equivalent circuit parameters).
10. No load and blocked rotor test on single-phase induction motor.
11. Study of Induction motor Starters

TOTAL : 45 PERIODS

OUTCOMES:
- Ability to model and analyze electrical apparatus and their application to power system
LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. Synchronous Induction motor 3HP – 1 No.
2. DC Shunt Motor Coupled With Three phase Alternator – 4 nos
3. DC Shunt Motor Coupled With Three phase Slip ring Induction motor – 1 No.
4. Three Phase Induction Motor with Loading Arrangement – 2 nos
5. Single Phase Induction Motor with Loading Arrangement – 2 nos
6. Tachometer -Digital/Analog – 8 nos
7. BLDC Motor – 1 No.
8. Single Phase Auto Transformer – 2 nos
9. Three Phase Auto Transformer – 3 nos
10. Single Phase Resistive Loading Bank – 2 nos
11. Three Phase Resistive Loading Bank – 2 nos
13. SPST switch – 2 nos

EC6651 COMMUNICATION ENGINEERING LT P C

OBJECTIVES:
- To introduce different methods of analog communication and their significance
- To introduce Digital Communication methods for high bit rate transmission
- To introduce the concepts of source and line coding techniques for enhancing rating of transmission of minimizing the errors in transmission.
- To introduce MAC used in communication systems for enhancing the number of users.
- To introduce various media for digital communication

UNIT I ANALOG COMMUNICATION

UNIT II DIGITAL COMMUNICATION
Pulse modulations – concepts of sampling and sampling theormes, PAM, PWM, PPM, PTM, quantization and coding : DCM, DM, slope overload error. ADM, DPCM, OOK systems – ASK, FSK, PSK, BSK, QPSK, QAM, MSK, GMSK, applications of Data communication.

UNIT III SOURCE CODES, LINE CODES & ERROR CONTROL (Qualitative only)
UNIT IV MULTIPLE ACCESS TECHNIQUES 9
SS&MA techniques : FDMA, TDMA, CDMA, SDMA application in wire and wireless communication:
Advantages (merits):

UNIT V SATELLITE, OPTICAL FIBER – POWERLINE, SCADA 9
Orbits : types of satellites : frequency used link establishment, MA techniques used in satellite
communication, earth station; aperture actuators used in satellite – Intelsat and Insat: fibers – types:
sources, detectors used, digital filters, optical link: power line carrier communications: SCADA

OUTCOMES:
- Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

REFERENCES:

EE6601 SOLID STATE DRIVES L T P C
3 0 0 3

OBJECTIVES:
- To understand steady state operation and transient dynamics of a motor load system.
- To study and analyze the operation of the converter/chopper fed dc drive, both qualitatively and
 quantitatively.
- To study and understand the operation and performance of AC motor drives.
- To analyze and design the current and speed controllers for a closed loop solid state DC motor
 drive.

UNIT I DRIVE CHARACTERISTICS 9
Electric drive – Equations governing motor load dynamics – steady state stability – multi quadrant
Dynamics: acceleration, deceleration, starting & stopping – typical load torque characteristics –
Selection of motor.

UNIT II CONVERTER / CHOPPER FED DC MOTOR DRIVE 9
Steady state analysis of the single and three phase converter fed separately excited DC motor
drive—continuous and discontinuous conduction— Time ratio and current limit control – 4 quadrant
operation of converter / chopper fed drive.

UNIT III INDUCTION MOTOR DRIVES 9
Stator voltage control—energy efficient drive—v/f control—constant airgap flux—field weakening mode
– voltage / current fed inverter – closed loop control.

UNIT IV SYNCHRONOUS MOTOR DRIVES 9

V/f control and self control of synchronous motor: Margin angle control and power factor control – permanent magnet synchronous motor.

UNIT V DESIGN OF CONTROLLERS FOR DRIVES 9

Transfer function for DC motor / load and converter – closed loop control with Current and speed feedback–armature voltage control and field weakening mode – Design of controllers; current controller and speed controller- converter selection and characteristics.

OUTCOMES:

- Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.

TEXT BOOKS:

REFERENCES:

methods- Timer and Counting devices, Watchdog Timer, Real Time Clock, In circuit emulator, Target Hardware Debugging.

UNIT II EMBEDDED NETWORKING 9

UNIT III EMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT 9
Embedded Product Development Life Cycle- objectives, different phases of EDLC, Modelling of EDLC; issues in Hardware-software Co-design, Data Flow Graph, state machine model, Sequential Program Model, concurrent Model, object oriented Model.

UNIT IV RTOS BASED EMBEDDED SYSTEM DESIGN 9
Introduction to basic concepts of RTOS- Task, process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking, Preemptive and non-preemptive scheduling, Task communication- shared memory, message passing-, Inter process Communication – synchronization between processes-semaphores, Mailbox, pipes, priority inversion, priority inheritance, comparison of Real time Operating systems: Vx Works, μC/OS-II, RT Linux.

UNIT V EMBEDDED SYSTEM APPLICATION DEVELOPMENT 9
Case Study of Washing Machine- Automotive Application- Smart card System Application,.

TOTAL: 45 PERIODS

OUTCOMES:
• Ability to understand and analyse, linear and digital electronic circuits.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
• To have an overview of power system operation and control.
• To model power-frequency dynamics and to design power-frequency controller.
• To model reactive power-voltage interaction and the control actions to be implemented for maintaining the voltage profile against varying system load.
• To study the economic operation of power system.
• To teach about SCADA and its application for real time operation and control of power systems.

UNIT I INTRODUCTION
An overview of power system operation and control - system load variation - load characteristics - load curves and load-duration curve - load factor - diversity factor - Importance of load forecasting and quadratic and exponential curve fitting techniques of forecasting – plant level and system level controls .

UNIT II REAL POWER - FREQUENCY CONTROL
Basics of speed governing mechanism and modeling - speed-load characteristics – load sharing between two synchronous machines in parallel - control area concept - LFC control of a single-area system - static and dynamic analysis of uncontrolled and controlled cases - two-area system – modeling - static analysis of uncontrolled case - tie line with frequency bias control - state variable model - integration of economic dispatch control with LFC.

UNIT III REACTIVE POWER–VOLTAGE CONTROL
Generation and absorption of reactive power - basics of reactive power control - excitation systems – modeling - static and dynamic analysis - stability compensation - methods of voltage control: tap-changing transformer, SVC (TCR + TSC) and STATCOM – secondary voltage control.

UNIT IV UNIT COMMITMENT AND ECONOMIC DISPATCH

UNIT V COMPUTER CONTROL OF POWER SYSTEMS
Need for computer control of power systems - concept of energy control centre - functions - system monitoring - data acquisition and control - system hardware configuration – SCADA and EMS functions - network topology - state estimation – WLSE - Contingency Analysis - state transition diagram showing various state transitions and control strategies.

TOTAL : 45 PERIODS

OUTCOMES:
• Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:
REFERENCES:

EE6604 DESIGN OF ELECTRICAL MACHINES

OBJECTIVES:
- To study mmf calculation and thermal rating of various types of electrical machines.
- To design armature and field systems for D.C. machines.
- To design core, yoke, windings and cooling systems of transformers.
- To design stator and rotor of induction machines.
- To design stator and rotor of synchronous machines and study their thermal behaviour.

UNIT I INTRODUCTION

UNIT II DC MACHINES

UNIT III TRANSFORMERS

UNIT IV INDUCTION MOTORS

UNIT V SYNCHRONOUS MACHINES
OUTCOMES:
- Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

REFERENCES:

EE6611 POWER ELECTRONICS AND DRIVES LABORATORY

OBJECTIVES:
To provide hands on experience with power electronic converter design and testing

LIST OF EXPERIMENTS:
1. Gate Pulse Generation using R,RC and UJT.
2. Characteristics of SCR and Triac
3. Characteristics of MOSFET and IGBT
4. AC to DC half controlled converter
5. AC to DC fully controlled Converter
6. Step down and step up MOSFET based choppers
7. IGBT based single phase PWM inverter
8. IGBT based three phase PWM inverter
9. AC Voltage controller
10. Switched mode power converter.
11. Simulation of PE circuits (1Φ & 3Φ semiconverter, 1Φ & 3Φ full converter, dc-dc converters, ac voltage controllers).

OUTCOMES:
- Ability to understand and analyse, linear and digital electronic circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. Device characteristics (for SCR, MOSFET, TRIAC and IGBT kit with built-in / discrete power supply and meters) - 2 each
2. Single phase SCR based half controlled converter and fully controlled converter along with built-in/separate/firing circuit/module and meter – 2 each

TOTAL: 45 PERIODS
3. MOSFET based step up and step down choppers (Built in/ Discrete) – 1 each
4. IGBT based single phase PWM inverter module/Discrete Component – 2
5. IGBT based three phase PWM inverter module/Discrete Component – 2
6. Switched mode power converter module/Discrete Component – 2
7. SCR & TRIAC based 1 phase AC controller along with lamp or rheostat load - 2
8. Cyclo converter kit with firing module –
9. Dual regulated Dc power supply with common ground
10. Cathode ray Oscilloscope – 10
11. Isolation Transformer – 5
12. Single phase Auto transformer – 3
13. Components (Inductance, Capacitance) 3 set for each
14. Multimeter – 5
15. LCR meter – 3
16. Rheostats of various ranges – 2 sets of 10 value
17. Work tables – 10
18. DC and AC meters of required ranges – 20
19. Component data sheets to be provided

EE6612 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY

OBJECTIVES:
To provide training on programming of microprocessors and microcontrollers and understand the
interface requirements.

LIST OF EXPERIMENTS:

1. Simple arithmetic operations: addition / subtraction / multiplication / division.
2. Programming with control instructions:
 (i) Ascending / Descending order, Maximum / Minimum of numbers
 (ii) Programs using Rotate instructions
 (iii) Hex / ASCII / BCD code conversions.
3. Interface Experiments: with 8085
 (i) A/D Interfacing. & D/A Interfacing.
4. Traffic light controller.
5. I/O Port / Serial communication
6. Programming Practices with Simulators/Emulators/open source
7. Read a key, interface display
8. Demonstration of basic instructions with 8051 Micro controller execution, including:
 (i) Conditional jumps, looping
Calling subroutines.

9. Programming I/O Port 8051
 (i) study on interface with A/D & D/A
 (ii) study on interface with DC & AC motor.
10. Mini project development with processors.

OUTCOMES:

- Ability to understand and analyse, linear and digital electronic circuits.
- To understand and apply computing platform and software for engineering problems.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Description of Equipment</th>
<th>Quantity required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>8085 Microprocessor Trainer with Power Supply</td>
<td>15</td>
</tr>
<tr>
<td>2.</td>
<td>8051 Micro Controller Trainer Kit with power supply</td>
<td>15</td>
</tr>
<tr>
<td>3.</td>
<td>8255 Interface board</td>
<td>5</td>
</tr>
<tr>
<td>4.</td>
<td>8251 Interface board</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>8259 Interface board</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>8279 Keyboard / Display Interface board</td>
<td>5</td>
</tr>
<tr>
<td>7.</td>
<td>8254 timer counter</td>
<td>5</td>
</tr>
<tr>
<td>8.</td>
<td>ADC and DAC card</td>
<td>5</td>
</tr>
<tr>
<td>9.</td>
<td>AC & DC motor with Controller</td>
<td>5</td>
</tr>
<tr>
<td>10.</td>
<td>Traffic Light Control System</td>
<td>5</td>
</tr>
</tbody>
</table>

EE6613 PRESENTATION SKILLS AND TECHNICAL SEMINAR

OBJECTIVES:

- To encourage the students to study advanced engineering developments
- To prepare and present technical reports.
- To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.

METHOD OF EVALUATION:

During the seminar session each student is expected to prepare and present a topic on engineering/technology, for a duration of about 8 to 10 minutes. In a session of three periods per week, 15 students are expected to present the seminar. Each student is expected to present at least twice during the semester and the student is evaluated based on that. At the end of the semester, he/she can submit a report on his/her topic of seminar and marks are given based on the report. A Faculty guide is to be allotted and he/she will guide and monitor the progress of the student and maintain attendance also. Evaluation is 100% internal.

TOTAL: 30 PERIODS
OUTCOMES:
- Ability to review, prepare and present technological developments
- Ability to face the placement interviews

EE6701 HIGH VOLTAGE ENGINEERING

OBJECTIVES:
- To understand the various types of over voltages in power system and protection methods.
- Generation of over voltages in laboratories.
- Measurement of over voltages.
- Nature of Breakdown mechanism in solid, liquid and gaseous dielectrics.
- Testing of power apparatus and insulation coordination.

UNIT I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS 9
Causes of over voltages and its effects on power system – Lightning, switching surges and temporary
overvoltages, Corona and its effects – Reflection and Refraction of Travelling waves- Protection
against overvoltages.

UNIT II DIELECTRIC BREAKDOWN 9
Gaseous breakdown in uniform and non-uniform fields – Corona discharges – Vacuum breakdown –
Conduction and breakdown in pure and commercial liquids, Maintenance of oil Quality – Breakdown
mechanisms in solid and composite dielectrics.

UNIT III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9
Generation of High DC, AC, impulse voltages and currents - Triggering and control of impulse
generators.

UNIT IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9
High Resistance with series ammeter – Dividers, Resistance, Capacitance and Mixed dividers - Peak
Voltmeter, Generating Voltmeters - Capacitance Voltage Transformers, Electrostatic Voltmeters –
Sphere Gaps - High current shunts- Digital techniques in high voltage measurement.

UNIT V HIGH VOLTAGE TESTING & INSULATION COORDINATION 9
High voltage testing of electrical power apparatus as per International and Indian standards – Power
frequency, impulse voltage and DC testing of Insulators, circuit breakers, bushing, isolators and
transformers- Insulation Coordination.

TOTAL : 45 PERIODS

OUTCOMES:
- Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:
REFERENCES:

EE6702 PROTECTION AND SWITCHGEAR L T P C
 3 0 0 3

OBJECTIVES:
- To educate the causes of abnormal operating conditions (faults, lightning and switching surges) of the apparatus and system.
- To introduce the characteristics and functions of relays and protection schemes.
- To impart knowledge on apparatus protection
- To introduce static and numerical relays
- To impart knowledge on functioning of circuit breakers

UNIT I PROTECTION SCHEMES 9
Principles and need for protective schemes – nature and causes of faults – types of faults – fault current calculation using symmetrical components – Methods of Neutral grounding – Zones of protection and essential qualities of protection – Protection schemes

UNIT II ELECTROMAGNETIC RELAYS 9
Operating principles of relays - the Universal relay – Torque equation – R-X diagram – Electromagnetic Relays – Overcurrent, Directional, Distance, Differential, Negative sequence and Under frequency relays.

UNIT III APPARATUS PROTECTION 9
Current transformers and Potential transformers and their applications in protection schemes - Protection of transformer, generator, motor, busbars and transmission line.

UNIT IV STATIC RELAYS AND NUMERICAL PROTECTION 9
Static relays – Phase, Amplitude Comparators – Synthesis of various relays using Static comparators – Block diagram of Numerical relays – Overcurrent protection, transformer differential protection, distant protection of transmission lines.

UNIT V CIRCUIT BREAKERS 9

TOTAL : 45 PERIODS

OUTCOMES:
- Ability to understand and analyze power system operation, stability, control and protection.
TEXT BOOKS:

REFERENCES:

EE6703 SPECIAL ELECTRICAL MACHINES LT P C
3 0 0 3

OBJECTIVES:
- To impart knowledge on Construction, principle of operation and performance of synchronous reluctance motors.
- To impart knowledge on the Construction, principle of operation, control and performance of stepping motors.
- To impart knowledge on the Construction, principle of operation, control and performance of switched reluctance motors.
- To impart knowledge on the Construction, principle of operation, control and performance of permanent magnet brushless D.C. motors.
- To impart knowledge on the Construction, principle of operation and performance of permanent magnet synchronous motors.

UNIT I SYNCHRONOUS RELUCTANCE MOTORS

UNIT II STEPPER MOTORS

UNIT III SWITCHED RELUCTANCE MOTORS (SRM)
Methods of Rotor position sensing – Sensor less operation – Characteristics and Closed loop control – Applications.

UNIT IV PERMANENT MAGNET BRUSHLESS D.C. MOTORS

UNIT V PERMANENT MAGNET SYNCHRONOUS MOTORS (PMSM)

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to model and analyze electrical apparatus and their application to power system

TEXT BOOKS:

REFERENCES:

UNIT II PLANNING 9

UNIT III ORGANISING 9

UNIT IV DIRECTING 9

UNIT V CONTROLLING 9
System and process of controlling – budgetary and non-budgetary control techniques – use of computers and IT in Management control – Productivity problems and management – control and performance – direct and preventive control – reporting.

TOTAL: 45 PERIODS

OUTCOMES:
• Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
To provide better understanding of power system analysis through digital simulation

LIST OF EXPERIMENTS:
1. Computation of Parameters and Modelling of Transmission Lines
2. Formation of Bus Admittance and Impedance Matrices and Solution of Networks.
5. Fault Analysis
7. Transient Stability Analysis of Multi machine Power Systems
8. Electromagnetic Transients in Power Systems

TOTAL : 45 PERIODS

OUTCOMES:
• Ability to understand and analyze power system operation, stability, control and protection.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. Personal computers (Pentium-IV, 80GB, 512 MBRAM) – 25 nos
2. Printer laser- 1 No.
3. Dot matrix- 1 No.
4. Server (Pentium IV, 80GB, 1GBRAM) (High Speed Processor) – 1 No.
5. Software: any power system simulation software - 5 licenses

OBJECTIVES:
To encourage the students to comprehend the knowledge acquired from the first Semester to Sixth Semester of B.E Degree Course through periodic exercise.

METHOD OF EVALUATION:
The students will be assessed 100% internally through weekly test with objective type questions on all the subject related topics

OUTCOMES:
• Ability to review, prepare and present technological developments
OBJECTIVES:

• To analyze the various concepts behind renewable energy resources.
• To introduce the energy saving concept by different ways of illumination.
• To understand the different methods of electric heating and electric welding.
• To introduce knowledge on Solar Radiation and Solar Energy Collectors
• To introduce concepts of Wind Energy and its utilization

UNIT I

ELECTRIC DRIVES AND TRACTION

Fundamentals of electric drive - choice of an electric motor - application of motors for particular services - traction motors - characteristic features of traction motor - systems of railway electrification - electric braking - train movement and energy consumption - traction motor control - track equipment and collection gear.

UNIT II

ILLUMINATION

Introduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapour lamps, fluorescent lamps – design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting - energy saving lamps, LED.

UNIT III

HEATING AND WELDING

UNIT IV

SOLAR RADIATION AND SOLAR ENERGY COLLECTORS

UNIT V

WIND ENERGY

Introduction - basic principles of wind energy conversion - site selection considerations - basic components of a WECS (Wind Energy Conversion System) - Classification of WECS - types of wind Turbines - analysis of aerodynamic forces acting on the blade - performances of wind.

TOTAL : 45 PERIODS

OUTCOMES:

• Ability to understand and analyze power system operation, stability, control and protection.
• Ability to handle the engineering aspects of electrical energy generation and utilization.

TEXT BOOKS:

REFERENCES:

EE6811 PROJECT WORK

OBJECTIVES:
- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

OUTCOMES:
- On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

TOTAL: 180 PERIODS
OBJECTIVES:
- To study about the concepts of windows programming models, MFC applications, drawing with the GDI, getting inputs from Mouse and the Keyboard.
- To study the concepts of Menu basics, menu magic and classic controls of the windows programming using VC++.
- To study the concept of Document/View Architecture with single & multiple document interface, toolbars, status bars and File I/O Serialization.
- To study about the integrated development programming event driven programming, variables, constants, procedures and basic ActiveX controls in visual basic.
- To understand the database and the database management system, visual data manager, data bound controls and ADO controls in VB.

UNIT I FUNDAMENTALS OF WINDOWS AND MFC

UNIT II RESOURCES AND CONTROLS
Creating a menu – Loading and displaying a menu – Responding to menu commands – Command ranges - Updating the items in menu, update ranges – Keyboard accelerators. Creating menus programmatically - Modifying menus programmatically - The system menu - Owner draw menus – Cascading menus - Context menus. The C button class – C list box class – C static class - The font view application – C edit class – C combo box class – C scrollbar class. Model dialog boxes – Modeless dialog boxes.

UNIT III DOCUMENT / VIEW ARCHITECTURE

UNIT IV FUNDAMENTALS OF VISUAL BASIC

UNIT V DATABASE PROGRAMMING WITH VB

OUTCOMES:

- To understand and apply computing platform and software for engineering problems.

TEXT BOOKS:

REFERENCES:

IC6601 ADVANCED CONTROL SYSTEM L T P C 3 0 0 3

OBJECTIVES:

- To provide knowledge on design in state variable form
- To provide knowledge in phase plane analysis.
- To give basic knowledge in describing function analysis.
- To study the design of optimal controller.
- To study the design of optimal estimator including Kalman Filter

UNIT I STATE VARIABLE DESIGN 9

UNIT II PHASE PLANE ANALYSIS 9

UNIT III DESCRIBING FUNCTION ANALYSIS 9
UNIT IV
OPTIMAL CONTROL
Introduction - Time varying optimal control – LQR steady state optimal control – Solution of Ricatti’s equation – Application examples.

UNIT V
OPTIMAL ESTIMATION
Optimal estimation – Kalman Bucy Filter-Solution by duality principle-Discrete systems- Kalman Filter- Application examples..

TOTAL : 45 PERIODS

OUTCOMES:
• Ability to apply advanced control theory to practical engineering problems.

TEXT BOOKS :

REFERENCES:

EE6002
POWER SYSTEM TRANSIENTS
LT P C
3 0 0 3

OBJECTIVES:
• To study the generation of switching transients and their control using circuit – theoretical concept.
• To study the mechanism of lighting strokes and the production of lighting surges.
• To study the propagation, reflection and refraction of travelling waves.
• To study the impact of voltage transients caused by faults, circuit breaker action, load rejection on integrated power system.

UNIT I
INTRODUCTION AND SURVEY
Review and importance of the study of transients - causes for transients. RL circuit transient with sine wave excitation - double frequency transients - basic transforms of the RLC circuit transients. Different types of power system transients - effect of transients on power systems – role of the study of transients in system planning.

UNIT II
SWITCHING TRANSIENTS
Over voltages due to switching transients - resistance switching and the equivalent circuit for interrupting the resistor current - load switching and equivalent circuit - waveforms for transient voltage across the load and the switch - normal and abnormal switching transients. Current suppression - current chopping - effective equivalent circuit. Capacitance switching - effect of source
regulation - capacitance switching with a restrike, with multiple restrikes. Illustration for multiple restriking transients - ferro resonance.

UNIT III LIGHTNING TRANSIENTS
Review of the theories in the formation of clouds and charge formation - rate of charging of thunder clouds – mechanism of lightning discharges and characteristics of lightning strokes – model for lightning stroke - factors contributing to good line design - protection using ground wires - tower footing resistance - interaction between lightning and power system.

UNIT IV TRAVELING WAVES ON TRANSMISSION LINE COMPUTATION OF TRANSIENTS
Computation of transients - transient response of systems with series and shunt lumped parameters and distributed lines. Traveling wave concept - step response - Bewely’s lattice diagram - standing waves and natural frequencies - reflection and refraction of travelling waves.

UNIT V TRANSIENTS IN INTEGRATED POWER SYSTEM
The short line and kilometric fault - distribution of voltages in a power system - Line dropping and load rejection - voltage transients on closing and reclosing lines - over voltage induced by faults - switching surges on integrated system qualitative application of EMTP for transient computation.

TOTAL: 45 PERIODS

OUTCOMES:
- Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To introduce the basic concepts of linear programming
- To educate on the advancements in Linear programming techniques
- To introduce non-linear programming techniques
- To introduce the interior point methods of solving problems
- To introduce the dynamic programming method

UNIT I LINEAR PROGRAMMING

UNIT II ADVANCES IN LPP

Dualit theory- Dual simplex method - Sensitivity analysis—Transportation problems— Assignment problems-Traveling sales man problem - Data Envelopment Analysis.

UNIT III NON LINEAR PROGRAMMING

Classification of Non Linear programming – Lagrange multiplier method – Karush – Kuhn Tucker conditions– Reduced gradient algorithms– Quadratic programming method – Penalty and Barrier method.

UNIT IV INTERIOR POINT METHODS

UNIT V DYNAMIC PROGRAMMING

TOTAL: 45 PERIODS

OUTCOMES:

- To understand ethical issues, environmental impact and acquire management skills.

TEXT BOOKS:

REFERENCES:

OBJECTIVES:
- To expose the basic concepts of optical fibers and their industrial applications.
- To provide adequate knowledge about Industrial application of optical fibres.
- To provide basic concepts of lasers.
- To provide knowledge about Industrial application of lasers.
- To provide knowledge about Industrial application of Holography and Medical applications of Lasers.

UNIT I OPTICAL FIBRES AND THEIR PROPERTIES 9

UNIT II INDUSTRIAL APPLICATION OF OPTICAL FIBRES 9

UNIT III LASER FUNDAMENTALS 9

UNIT IV INDUSTRIAL APPLICATION OF LASERS 9
Laser for measurement of distance, length, velocity, acceleration, current, voltage and Atmospheric effect – Material processing – Laser heating, welding, melting and trimming of material – Removal and vaporization.

UNIT V HOLOGRAM AND MEDICAL APPLICATIONS 9

TOTAL : 45 PERIODS

OUTCOMES:
- Ability to understand and analyze Instrumentation systems and their applications to various industries.

TEXT BOOKS:

REFERENCES:
1. Asu Ram Jha, Fiber Optic Technology Applications to commercial, Industrial, Military and Space Optical systems, PHI learning Private limited, 2009.
OBJECTIVES:
- To Introduce Fundamentals of Biomedical Engineering
- To study the communication mechanics in a biomedical system with few examples
- To study measurement of certain important electrical and non-electrical parameters
- To understand the basic principles in imaging techniques
- To have a basic knowledge in life assisting and therapeutic devices

UNIT I FUNDAMENTALS OF BIOMEDICAL ENGINEERING 9

UNIT II NON ELECTRICAL PARAMETERS MEASUREMENT AND DIAGNOSTIC PROCEDURES 9

UNIT III ELECTRICAL PARAMETERS ACQUISITION AND ANALYSIS 9

UNIT IV IMAGING MODALITIES AND ANALYSIS 9

UNIT V LIFE ASSISTING, THERAPEUTIC AND ROBOTIC DEVICES 9

TOTAL: 45 PERIODS

OUTCOMES:
- Ability to understand and analyze Instrumentation systems and their applications to various industries.

TEXT BOOKS:

REFERENCES:

EE6004 FLEXIBLE AC TRANSMISSION SYSTEMS L T P C 3 0 0 3

OBJECTIVES:
- To introduce the reactive power control techniques
- To educate on static VAR compensators and their applications
- To provide knowledge on Thyristor controlled series capacitors
- To educate on STATCOM devices
- To provide knowledge on FACTS controllers

UNIT I INTRODUCTION
Reactive power control in electrical power transmission lines - Uncompensated transmission line - series compensation – Basic concepts of Static Var Compensator (SVC) – Thyristor Controlled Series capacitor (TCSC) – Unified power flow controller (UPFC).

UNIT II STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS

UNIT III THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC) AND APPLICATIONS

UNIT IV VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS

UNIT V CO-ORDINATION OF FACTS CONTROLLERS
OUTCOMES:
- Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

REFERENCES:

EE6005 POWER QUALITY

OBJECTIVES:
- To introduce the power quality problem
- To educate on production of voltages sags, over voltages and harmonics and methods of control.
- To study overvoltage problems
- To study the sources and effect of harmonics in power system
- To impart knowledge on various methods of power quality monitoring.

UNIT I INTRODUCTION TO POWER QUALITY
Terms and definitions: Overloading - under voltage - over voltage. Concepts of transients - short duration variations such as interruption - long duration variation such as sustained interruption. Sags and swells - voltage sag - voltage swell - voltage imbalance - voltage fluctuation - power frequency variations. International standards of power quality. Computer Business Equipment Manufacturers Associations (CBEMA) curve.

UNIT II VOLTAGE SAGS AND INTERRUPTIONS
Sources of sags and interruptions - estimating voltage sag performance. Thevenin’s equivalent source - analysis and calculation of various faulted condition. Voltage sag due to induction motor starting. Estimation of the sag severity - mitigation of voltage sags, active series compensators. Static transfer switches and fast transfer switches.

UNIT III OVERVOLTAGES
Sources of over voltages - Capacitor switching – lightning - ferro resonance. Mitigation of voltage swells - surge arresters - low pass filters - power conditioners. Lightning protection – shielding - line
arresters - protection of transformers and cables. An introduction to computer analysis tools for transients, PSCAD and EMTP.

UNIT IV HARMONICS

UNIT V POWER QUALITY MONITORING
Monitoring considerations - monitoring and diagnostic techniques for various power quality problems - modeling of power quality (harmonics and voltage sag) problems by mathematical simulation tools - power line disturbance analyzer – quality measurement equipment - harmonic / spectrum analyzer - flicker meters - disturbance analyzer. Applications of expert systems for power quality monitoring.

OUTCOMES:
- Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

REFERENCES:
1. G.T. Heydt, 'Electric Power Quality', 2nd Edition. (West Lafayette, IN, Stars in a Circle Publications, 1994). (For Chapter 1, 2, 3 and 5)
OBJECTIVES:
- To expose the students to the concepts of feed forward neural networks.
- To provide adequate knowledge about feedback neural networks
- To provide adequate knowledge about fuzzy and neuro-fuzzy systems
- To provide comprehensive knowledge of fuzzy logic control to real time systems.
- To provide adequate knowledge of genetic algorithms and its application to economic dispatch and unit commitment problems.

UNIT I ARCHITECTURES – ANN

UNIT II NEURAL NETWORKS FOR CONTROL

UNIT III FUZZY SYSTEMS

UNIT IV APPLICATION OF FUZZY LOGIC SYSTEMS
Fuzzy logic control: Home heating system - liquid level control - aircraft landing- inverted pendulum – fuzzy PID control, Fuzzy based motor control.

UNIT V GENETIC ALGORITHMS

OUTCOMES:
- Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory control theory and apply them to electrical engineering problems.
- To understand and apply computing platform and software for engineering problems.

TEXT BOOKS:

REFERENCES:

GE6081 FUNDAMENTALS OF NANOSCIENCE L T P C 3 0 0 3

OBJECTIVES:
To learn about basis of nanomaterial science, preparation method, types and application

UNIT I INTRODUCTION 8
Nanoscale Science and Technology- Implications for Physics, Chemistry, Biology and Engineering- Classifications of nanostructured materials- nano particles- quantum dots, nanowires-ultra-thinfilms-multilayered materials. Length Scales involved and effect on properties: Mechanical, Electronic, Optical, Magnetic and Thermal properties. Introduction to properties and motivation for study (qualitative only).

UNIT II GENERAL METHODS OF PREPARATION 9
Bottom-up Synthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Mechanical Milling, Colloidal routes, Self-assembly, Vapour phase deposition, MOCVD, Sputtering, Evaporation, Molecular Beam Epitaxy, Atomic Layer Epitaxy, MOMBE.

UNIT III NANOMATERIALS 12

UNIT IV CHARACTERIZATION TECHNIQUES 9

UNIT V APPLICATIONS 7

TOTAL : 45 PERIODS

OUTCOMES:
• Will familiarize about the science of nanomaterials
• Will demonstrate the preparation of nanomaterials
Will develop knowledge in characteristic nanomaterial

TEXT BOOKS:

REFERENCES:

IC6002 SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL LT P C
3 0 0 3

OBJECTIVES:
- To introduce Non parametric methods
- To impart knowledge on parameter estimation methods
- To impart knowledge on Recursive identification methods
- To impart knowledge on Adaptive control schemes
- To introduce stability, Robustness and Applications of adaptive control method

UNIT I NON PARAMETRIC METHODS
Non parametric methods: Transient analysis–frequency analysis–Correlation analysis–Spectral analysis.

UNIT II PARAMETER ESTIMATION METHODS

UNIT III RECURSIVE IDENTIFICATION METHODS

UNIT IV ADAPTIVE CONTROL SCHEMES

UNIT V ISSUES IN ADAPTIVE CONTROL AND APPLICATIONS
Stability – Convergence – Robustness –Applications of adaptive control.

TOTAL: 45 PERIODS
OUTCOMES:
- Ability to apply advanced control theory to practical engineering problems.

TEXT BOOKS:

REFERENCES:

EE6007 MICRO ELECTRO MECHANICAL SYSTEMS LT P C 3 0 0 3

OBJECTIVES:
- To provide knowledge of semiconductors and solid mechanics to fabricate MEMS devices.
- To educate on the rudiments of Micro fabrication techniques.
- To introduce various sensors and actuators.
- To introduce different materials used for MEMS.
- To educate on the applications of MEMS to disciplines beyond Electrical and Mechanical engineering.

UNIT I INTRODUCTION

UNIT II SENSORS AND ACTUATORS-I

UNIT III SENSORS AND ACTUATORS-II

UNIT IV MICROMACHINING
Silicon Anisotropic Etching – Anisotrophic Wet Etching – Dry Etching of Silicon – Plasma Etching – Deep Reaction Ion Etching (DRIE) – Isotropic Wet Etching – Gas Phase Etchants – Case studies -

UNIT V POLYMER AND OPTICAL MEMS
Polymers in MEMS– Polimide - SU-8 - Liquid Crystal Polymer (LCP) – PDMS – PMMA – Parylene – Fluorocarbon - Application to Acceleration, Pressure, Flow and Tactile sensors- Optical MEMS – Lenses and Mirrors – Actuators for Active Optical MEMS.

TOTAL : 45 PERIODS

OUTCOMES:

- Ability to understand the operation of micro devices, micro systems and their applications.
- Ability to design the micro devices, micro systems using the MEMS fabrication process.

TEXT BOOKS:

REFERENCES:

EE6008 MICROCONTROLLER BASED SYSTEM DESIGN

OBJECTIVES:
- To introduce the architecture of PIC microcontroller
- To educate on use of interrupts and timers
- To educate on the peripheral devices for data communication and transfer
- To introduce the functional blocks of ARM processor
- To educate on the architecture of ARM processors

UNIT I INTRODUCTION TO PIC MICROCONTROLLER

UNIT II INTERRUPTS AND TIMER
UNIT III PERIPHERALS AND INTERFACING

UNIT IV INTRODUCTION TO ARM PROCESSOR

UNIT V ARM ORGANIZATION

OUTCOMES:

- To understand and apply computing platform and software for engineering problems.
- To understand ethical issues, environmental impact and acquire management skills.

TEXT BOOKS:

REFERENCE:

EE6009 POWER ELECTRONICS FOR RENEWABLE ENERGY SYSTEMS

OBJECTIVES:

- To Provide knowledge about the stand alone and grid connected renewable energy systems.
- To equip with required skills to derive the criteria for the design of power converters for renewable energy applications.
- To analyse and comprehend the various operating modes of wind electrical generators and solar energy systems.
- To design different power converters namely AC to DC, DC to DC and AC to AC converters for renewable energy systems.
- To develop maximum power point tracking algorithms.

UNIT I INTRODUCTION

Environmental aspects of electric energy conversion: impacts of renewable energy generation on environment (cost-GHG Emission) - Qualitative study of different renewable energy resources: Solar, wind, ocean, Biomass, Fuel cell, Hydrogen energy systems and hybrid renewable energy systems.
UNIT II ELECTRICAL MACHINES FOR RENEWABLE ENERGY CONVERSION 9
Reference theory fundamentals-principle of operation and analysis: IG, PMSG, SCIG and DFIG.

UNIT III POWER CONVERTERS 9
Solar: Block diagram of solar photo voltaic system -Principle of operation: line commutated converters (inversion-mode) - Boost and buck-boost converters- selection of inverter, battery sizing, array sizing
Wind: Three phase AC voltage controllers- AC-DC-AC converters: uncontrolled rectifiers, PWM Inverters, Grid Interactive Inverters-matrix converters.

UNIT IV ANALYSIS OF WIND AND PV SYSTEMS 9
Stand alone operation of fixed and variable speed wind energy conversion systems and solar system- Grid connection Issues -Grid integrated PMSG, SCIG Based WECS, grid Integrated solar system

UNIT V HYBRID RENEWABLE ENERGY SYSTEMS 9
Need for Hybrid Systems- Range and type of Hybrid systems- Case studies of Wind-PV Maximum Power Point Tracking (MPPT).

TOTAL : 45 PERIODS

OUTCOMES:
• Ability to understand and analyze power system operation, stability, control and protection.
• Ability to handle the engineering aspects of electrical energy generation and utilization.

TEXT BOOK:

REFERENCES:
OBJECTIVES:
- To understand the concept, planning of DC power transmission and comparison with AC power transmission.
- To analyze HVDC converters.
- To study about the HVDC system control.
- To analyze harmonics and design of filters.
- To model and analysis the DC system under study state.

UNIT I INTRODUCTION
DC Power transmission technology – Comparison of AC and DC transmission – Application of DC transmission – Description of DC transmission system – Planning for HVDC transmission – Modern trends in HVDC technology – DC breakers – Operating problems – HVDC transmission based on VSC – Types and applications of MTDC systems.

UNIT II ANALYSIS OF HVDC CONVERTERS
Line commutated converter - Analysis of Graetz circuit with and without overlap - Pulse number – Choice of converter configuration – Converter bridge characteristics – Analysis of a 12 pulse converters – Analysis of VSC topologies and firing schemes.

UNIT III CONVERTER AND HVDC SYSTEM CONTROL
Principles of DC link control – Converter control characteristics – System control hierarchy – Firing angle control – Current and extinction angle control – Starting and stopping of DC link – Power control – Higher level controllers – Control of VSC based HVDC link.

UNIT IV REACTIVE POWER AND HARMONICS CONTROL
Reactive power requirements in steady state – Sources of reactive power – SVC and STATCOM – Generation of harmonics – Design of AC and DC filters – Active filters.

UNIT V POWER FLOW ANALYSIS IN AC/DC SYSTEMS
Per unit system for DC quantities – DC system model – Inclusion of constraints – Power flow analysis – case study.

OUTCOMES:
- Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

- To introduce the basics of dynamics and stability problems
- To educate on modeling of synchronous machines
- To educate on the excitation system and speed-governing controllers.
- To study small signal stability of a single-machine infinite bus system with excitation system and power system stabilizer.
- To educate on the transient stability simulation of multi machine power system.

UNIT I
INTRODUCTION
Basics of system dynamics – numerical techniques – introduction to software packages to study the responses. Concept and importance of power system stability in the operation and design - distinction between transient and dynamic stability - complexity of stability problem in large system – necessity for reduced models - stability of interconnected systems.

UNIT II
SYNCHRONOUS MACHINE MODELLING
Synchronous machine - flux linkage equations - Park’s transformation - per unit conversion - normalizing the equations - equivalent circuit - current space model - flux linkage state space model. Sub-transient and transient inductances - time constants. Simplified models (one axis and constant flux linkage) - steady state equations and phasor diagrams.

UNIT III
MACHINE CONTROLLERS
Exciter and voltage regulators - function and types of excitation systems - typical excitation system configuration - block diagram and state space representation of IEEE type 1 excitation system - saturation function - stabilizing circuit. Function of speed governing systems - block diagram and state space representation of IEEE mechanical hydraulic governor and electrical hydraulic governors for hydro turbines and steam turbines.

UNIT IV
TRANSIENT STABILITY
State equation for multi machine system with one axis model and simulation – modelling of multi machine power system with one axis machine model including excitation system and speed governing system and simulation using R-K method of fourth order (Gill’s technique) for transient stability analysis - power system stabilizer. For all simulations, the algorithm and flow chart have to be discussed.

UNIT V
DYNAMIC STABILITY

TOTAL : 45 PERIODS
OUTCOMES:
- Ability to understand and analyze power system operation, stability, control and protection.

TEXT BOOKS:

REFERENCES:

IC6003 PRINCIPLES OF ROBOTICS

OBJECTIVES:
- To introduce the functional elements of Robotics
- To impart knowledge on the direct and inverse kinematics
- To introduce the manipulator differential motion and control
- To educate on various path planning techniques
- To introduce the dynamics and control of manipulators

UNIT I BASIC CONCEPTS

UNIT II DIRECT AND INVERSE KINEMATICS

UNIT III MANIPULATOR DIFFERENTIAL MOTION AND STATICS
Linear and angular velocities-Manipulator Jacobian-Prismatic and rotary joints–Inverse -Wrist and arm singularity - Static analysis - Force and moment Balance.

UNIT IV PATH PLANNING
Definition-Joint space technique-Use of p-degree polynomial-Cubic polynomial-Cartesian space technique - Parametric descriptions - Straight line and circular paths - Position and orientation planning.
UNIT V DYNAMICS AND CONTROL
Lagrangian mechanics-2DOF Manipulator-Lagrange Euler formulation-Dynamic model-Manipulator control problem-Linear control schemes-PID control scheme-Force control of robotic manipulator.

TOTAL: 45 PERIODS

OUTCOMES:
• Ability to understand and analyze Instrumentation systems and their applications to various industries.

TEXT BOOKS:

REFERENCES:

GE6075 PROFESSIONAL ETHICS IN ENGINEERING

OBJECTIVES:
• To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES

UNIT II ENGINEERING ETHICS
UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION
Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

UNIT V GLOBAL ISSUES

TOTAL: 45 PERIODS

OUTCOMES:
• Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society.

TEXT BOOKS:

REFERENCES:

Web sources:
1. www.onlineethics.org
2. www.nspe.org
3. www.globalethics.org
4. www.ethics.org
OBJECTIVES:
- To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION

UNIT II TQM PRINCIPLES
Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I
The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II

UNIT V QUALITY SYSTEMS

TOTAL: 45 PERIODS

OUTCOMES:
- The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXT BOOK:

REFERENCES:
OBJECTIVES:
- To bring out the concepts related to stationary and non-stationary random signals
- To emphasize the importance of true estimation of power spectral density
- To introduce the design of linear and adaptive systems for filtering and linear prediction
- To introduce the concept of wavelet transforms in the context of image processing

UNIT I DISCRETE-TIME RANDOM SIGNALS

UNIT II SPECTRUM ESTIMATION
Bias and Consistency, Periodogram, Modified periodogram, Blackman-Tukey method, Welch method, Parametric methods of spectral estimation, Levinson-Durbin recursion.

UNIT III LINEAR ESTIMATION AND PREDICTION
Forward and Backward linear prediction, Filtering - FIR Wiener filter- Filtering and linear prediction, non-causal and causal IIR Wiener filters, Discrete Kalman filter.

UNIT IV ADAPTIVE FILTERS

UNIT V WAVELET TRANSFORM
Multiresolution analysis, Continuous and discrete wavelet transform, Short Time Fourier Transform, Application of wavelet transform, Cepstrum and Homomorphic filtering.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to:
- Explain the parametric methods for power spectrum estimation.
- Discuss adaptive filtering techniques using LMS algorithm and the applications of adaptive filtering.
- Analyze the wavelet transforms.

TEXT BOOKS:

REFERENCE:
OBJECTIVES:
• To introduce the importance of computer aided design method.
• To provide basic electromagnetic field equations and the problem formulation for CAD applications.
• To get familiarized with Finite Element Method as applicable for Electrical Engineering.
• To introduce the organization of a typical CAD package.
• To introduce Finite Element Method for the design of different Electrical apparatus.

UNIT I INTRODUCTION
Conventional design procedures – Limitations – Need for field analysis based design – Review of Basic principles of energy conversion – Development of Torque/Force.

UNIT II MATHEMATICAL FORMULATION OF FIELD PROBLEMS

UNIT III PHILOSOPHY OF FEM

UNIT IV CAD PACKAGES

UNIT V DESIGN APPLICATIONS

TOTAL : 45 PERIODS

OUTCOMES:
• Ability to model and analyze electrical apparatus and their application to power system.

TEXT BOOKS:

REFERENCES:
5. User Manuals of MAGNET, MAXWELL & ANSYS Softwares.
OBJECTIVES:

- In this course, the MOS circuit realization of the various building blocks that is common to any microprocessor or digital VLSI circuit is studied.
- Architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology are discussed.
- The main focus in this course is on the transistor circuit level design and realization for digital operation and the issues involved as well as the topics covered are quite distinct from those encountered in courses on CMOS Analog IC design.

UNIT I MOUS TRANSISTOR PRINCIPLE
NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of CMOS circuits and device modeling, Scaling principles and fundamental limits, CMOS inverter scaling, propagation delays, Stick diagram, Layout diagrams

UNIT II COMBINATIONAL LOGIC CIRCUITS
Examples of Combinational Logic Design, Elmore’s constant, Pass transistor Logic, Transmission gates, static and dynamic CMOS design, Power dissipation – Low power design principles

UNIT III SEQUENTIAL LOGIC CIRCUITS
Static and Dynamic Latches and Registers, Timing issues, pipelines, clock strategies, Memory architecture and memory control circuits, Low power memory circuits, Synchronous and Asynchronous design

UNIT IV DESIGNING ARITHMETIC BUILDING BLOCKS
Data path circuits, Architectures for ripple carry adders, carry look ahead adders, High speed adders, accumulators, Multipliers, dividers, Barrel shifters, speed and area tradeoff

UNIT V IMPLEMENTATION STRATEGIES
Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block architectures, FPGA interconnect routing procedures.

OUTCOMES:
Upon completion of the course, students should
- Explain the basic CMOS circuits and the CMOS process technology.
- Discuss the techniques of chip design using programmable devices.
- Model the digital system using Hardware Description Language.

TEXTBOOKS:

REFERENCES: