
PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 1

CS8602 COMPILER DESIGN

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 2

CS8602 COMPILER DESIGN
OBJECTIVES:

 To learn the various phases of compiler.

 To learn the various parsing techniques.

 To understand intermediate code generation and run-time environment.

 To learn to implement front-end of the compiler.

 To learn to implement code generator.

UNIT I INTRODUCTION TO COMPILERS

Structure of a compiler – Lexical Analysis – Role of Lexical Analyzer – Input Buffering –

Specification of Tokens – Recognition of Tokens – Lex – Finite Automata – Regular

Expressions to Automata – Minimizing DFA.

UNIT II SYNTAX ANALYSIS

Role of Parser – Grammars – Error Handling – Context-free grammars – Writing a grammar –

Top Down Parsing - General Strategies Recursive Descent Parser Predictive Parser-LL(1)

Parser-Shift Reduce Parser-LR Parser-LR (0)Item Construction of SLR Parsing Table -

Introduction to LALR Parser - Error Handling and Recovery in Syntax Analyzer-YACC.

UNIT III INTERMEDIATE CODE GENERATION

Syntax Directed Definitions, Evaluation Orders for Syntax Directed Definitions, Intermediate

Languages: Syntax Tree, Three Address Code, Types and Declarations, Translation of

Expressions, Type Checking.

UNIT IV RUN-TIME ENVIRONMENT AND CODE GENERATION

Storage Organization, Stack Allocation Space, Access to Non-local Data on the Stack, Heap

Management - Issues in Code Generation - Design of a simple Code Generator.

UNIT V CODE OPTIMIZATION

Principal Sources of Optimization – Peep-hole optimization - DAG- Optimization of Basic

Blocks-Global Data Flow Analysis - Efficient Data Flow Algorithm.

COURSE OUTCOMES:

At the end of the course, the student should be able to:

CO1 Understand the different phases of compiler.

CO2 Design a lexical analyzer for a sample language.

CO3 Apply different parsing algorithms to develop the parsers for a given grammar.

CO4 Understand syntax-directed translation and run-time environment.

CO5 Learn to implement code optimization techniques and a simple code generator.

CO6 Design and implement a scanner and a parser using LEX and YACC tools.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 3

UNIT I INTRODUCTION TO COMPILERS

 PART – A

1. What is a compiler? (R) (May/June 2008) (May/June 2012)

A compiler is a program that reads a program written in one language –the source

language and translates it into an equivalent program in another language-the target

language. The compiler reports to its user the presence of errors in the source program.

2. What are the two parts of a compilation? (R)(May/June 2009) (May/June 2016)

 (May/June 2017)(APR/MAY 2017)(Nov/Dec 2018) (NOV/DEC 21)

 What are the two parts of a compilation and its function?(Apr/May 2018)

Analysis and Synthesis are the two parts of compilation. The analysis part breaks up the

source program into constituent pieces and creates an intermediate representation of the

source program. It includes Lexical (Linear) Analysis, Syntax (Hierarchical) Analysis,

and Semantic Analysis.The synthesis part constructs the desired target program from the

intermediate representation. It includes Code optimization phase, Code generation.

3. List the subparts or phases of analysis part. (R)

 List out the phases included in the analysis phase of compiler.(APR/MAY 22)

 Analysis consists of three phases:

 Linear Analysis or Lexical Analysis

 Hierarchical Analysis or parsing or syntax analysis

 Semantic Analysis

 Intermediate code generator

4. What is linear analysis? (R)

Linear analysis is one in which the stream of characters making up the source program is

read from left to right and grouped into tokens that are sequences of characters having a

collective meaning. Also called lexical analysis or scanning.

5. List the various phases of a compiler. (R) (Nov/Dec 2008)

The following are the various phases of a compiler:

 Lexical Analyzer

 Syntax Analyzer

 Semantic Analyzer

 Intermediate code generator

 Code optimizer

 Code generator

6. What are the classifications of a compiler? (R)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 4

Compilers are classified as:

 Single- pass

 Multi-pass

 Load-and-go

 Debugging or optimizing

7. What is a symbol table? (R)

A symbol table is a data structure containing a record for each identifier, with fields for

the attributes of the identifier. The data structure allows us to find the record for each

identifier quickly and to store or retrieve data from that record quickly.Whenever an

identifier is detected by a lexical analyzer, it is entered into the symbol table. The

attributes of an identifier cannot be determined by the lexical analyzer.

8. State some software tools that manipulate source program? (U) (May/June 2013)

Structure editors

Pretty printers

Static checkers

Interpreters

9. Mention some of the cousins of a compiler. (R) (April/May 2004, April/May 2005)

 (APRIL/MAY 2017) (NOV/DEC 2021)
 Cousins of the compiler are:

 Preprocessors

 Assemblers

 Loaders and Link-Editors

10. List the phases that constitute the front end of a compiler. (R) (May/June 2013)

The front end consists of those phases or parts of phases that depends primarily on the

source language and are largely independent of the target machine. These include

· Lexical and Syntactic analysis

· The creation of symbol table

· Semantic analysis

· Generation of intermediate code

A certain amount of code optimization can be done by the front end as well. Also

includes error handling that goes along with each of these phases.

11. What is a Structure editor? (R)

A structure editor takes as input a sequence of commands to build a source program .The

structure editor not only performs the text creation and modification functions of an

ordinary text.

12. Mention the back-end phases of a compiler. (R)

The back end of the compiler includes those portions that depend on the target machine

and generally those portions do not depend on the source language, just the intermediate

language. These include

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 5

· Code optimization

· Code generation, along with error handling and symbol- table operations.

13. Define compiler-compiler. (R)

Systems to help with the compiler-writing process have often been referred to as

compiler-compilers, compiler-generators or translator-writing systems. Largely they are

oriented around a particular model of languages, and they are suitable for generating

compilers of languages similar model.

14. List the various compiler construction tools. (R) (April /May 2008) (April/May 2011)

(Nov/Dec 2016)

The following is a list of some compiler construction tools:

· Parser generators

· Scanner generators

· Syntax-directed translation engines

· Automatic code generators

· Data-flow engines

15. What is an interpreter? (R) (Nov/Dec 2017)

An interpreter is a translator which translates the source program line by line and

executes the operations specified in the source program on inputs supplied by the user.

16. Illustrate diagrammatically how a language is processed(AN) (May/June 2016)

How source code is translated to machine code? (Nov/Dec 2018)

Skeletal source program

 ↓

Preprocessor

↓

Source program

↓

Compiler

↓

Target assembly program

↓

Assembler

↓

Relocatable machine code

↓

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 6

Loader/ link editor ←library, relocatable object files

↓

Absolute machine code

17. State any two reasons as to why phases of compiler should be grouped. (May/June

2014)How will you group the phases of compiler?(R)(Nov/Dec 2013)

A Compiler operates in phases,each of which transforms the source program from one

representation into another representation.They communicate with error handlers.Logically

each phase is viewed as a separate program that reads input and produces output for the next

phase (i.e.) a pipeline.

18. What are the functions of preprocessors? (R) (May/June 2009)

Program that processes the source code before the compiler sees it. Usually, it

implements macro expansion, but it can do much more.

 The functions of a preprocessor are:

Macro processing

File inclusion.

Rational preprocessors

Language extensions

19. Distinguish between compiler and interpreter(AN) (Nov/Dec 2008)

Complier is a program that reads a program written in one language –the

sourceLanguage and translates it into an equivalent program in another language- the

targetlanguage. In this translation process, the complier reports to its user the presence of

the errors in the source program.

Interpreter is a language processor program that translates and executes source code

directly, without compiling it to machine code.Compiler produces a target program

whereas an interpreter performs the operations implied by the source program.

20. Give examples for static check. (U) (May/June 2013)

It may detect the parts of a source program that can never be executed

It can catch logical errors.

21. Define Cross Compilers (R)(NOV/DEC 2017)(NOV/DEC 2021)
A cross compiler is a compiler capable of creating executable code for a platform other

than the one on which the compiler is running. For example, a compiler that runs on a

Windows 7 PC but generates code that runs on Android smartphone is a cross compiler.

22. Describe the possible error recovery actions in lexical analyzer.(U)(APR/MAY 2018)

1. Deleting an extraneous character

2. Inserting a missing character

3. Replacing an incorrect character by a correct character

4. Transposing two adjacent characters

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 7

23. Differentiate tokens, patterns, lexeme. (AN) (May /June 2013, Nov/Dec 2010)

(Nov/Dec 2016)(NOV/DEC 2017) (NOV/DEC 2021)

Discriminate tokens, patterns and lexemes.(April/May 2019)

Tokens- Sequence of characters that have a collective meaning.

Patterns- There is a set of strings in the input for which the same token is produced as

output. This set of strings is described by a rule called a pattern associated with the

token.

 Lexeme- A sequence of characters in the source program that is matched by the pattern

 for a token.

24. List the operations on languages. (R) (May/June 2016)

· Union - L U M ={s | s is in L or s is in M}

· Concatenation – LM ={st | s is in L and t is in M}

· Kleene Closure – L* (zero or more concatenations of L)

· Positive Closure – L+ (one or more concatenations of L)

25. Write a regular expression for an identifier and number. (C) (April/May 2017)

An identifier is defined as a letter followed by zero or more letters or digits.

The regular expression for an identifier is given as

 letter (letter | digit)*

26. Mention the various notational shorthands for representing regular expressions.(R)

· One or more instances (+)

· Zero or one instance (?)

· Character classes ([abc] where a,b,c are alphabet symbols denotes the regular

expressions a | b | c.)

· Non regular sets

27. List the various error recovery strategies for a lexical analysis. (R)

(Nov/Dec 2008)(Nov/Dec 2015) (NOV/DEC 2021)

Possible error recovery actions are:

· Panic mode recovery

· Deleting an extraneous character

· Inserting a missing character

· Replacing an incorrect character by a correct character

· Transposing two adjacent characters

28. Why lexical and syntax analyzers are separated out? (AN)

Reasons for separating the analysis phase into lexical and syntax analyzers:

Simpler design.

 Compiler efficiency is improved.

 Compiler portability is enhanced.

29. What is a lexeme? Define a regular set. (R) (Nov/Dec 2006)(Nov/Dec 2010)

A Lexeme is a sequence of characters in the source program that is matched by the

pattern for a token.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 8

A language denoted by a regular expression is said to be a regular set.

30. What is a sentinel? What is its usage? (R) (April/May 2004)(Nov/Dec 2010)
 A Sentinel is a special character that cannot be part of the source program. Normally use

 ‘eof’ as the sentinel. This is used for speeding-up the lexical analyzer

31. What is Lexical Analysis?Mention the issues in a lexical analyzer. (R)

(May /June 2013)

The first phase of compiler is Lexical Analysis. This is also known as linear analysis

in which the stream of characters making up the source program is read from left-to-right

and grouped into tokens that are sequences of characters having a collective meaning.

Issues:

Lexical analyzer doesn’t return a list of tokens at one short,it returns a token when the

parser asks a token from it. There are several reason for separating the analysis phase of

compiling into lexical analysis and parsing:

 Simpler design is perhaps the most important consid

 eration. The separation of lexical

 analysis often allows us to simplify one or other of these phases.

 Compiler efficiency is improved.

 Compiler portability is enhanced.

32. What are the Error-recovery actions in a lexical analyzer? (R) (May/June 2013)

 1. Deleting an extraneous character

 2. Inserting a missing character

 3. Replacing an incorrect character by a correct character

 4. Transposing two adjacent characters

33. Write a short note on LEX. (U)

A LEX source program is a specification of lexical analyzer consisting of set of regular

expressions together with an action for each regular expression. The action is a piece of

code, which is to be executed whenever a token specified by the corresponding regular

expression is recognized. The output of a LEX is a lexical analyzer program constructed

from the LEX source specification.

34. What are the components of Lex? (R) (NOV/DEC 2015)

Declarations

Translation rules

Auxiliary Procedures

35. Why buffering used in lexical analysis? What are the commonly used buffering

methods? (AN) (May/June 2014)

Buffering techniques have been developed to reduce the amount of overhead required to

process a single input character.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 9

36. What is phrase level error recovery? (R) (Nov/Dec 2008)

Phrase level error recovery is implemented by filling in the blank entries in thepredictive

parsing table with pointers to error routines. These routines may change,insert, or delete

symbols on the input and issue appropriate error messages. They mayalso pop from the

stack.

37. State the interactions between the lexical analyzer and the parser. (AN)

 (Nov/Dec 2015) (Nov/Dec 2021)

38. What are the possible error-recovery actions in lexical Analyzer? (R)

 (May/June 2013)
Possible error recovery actions are:

o Panic mode recovery

o Deleting an extraneous character

o Inserting a missing character

o Replacing an incorrect character by a correct character

o Transposing two adjacent characters

39. Define Lexeme. (R) (May/June 2014) (Nov/Dec2017)

A Lexeme is a sequence of characters in the source program that is matched by the

pattern for a token. A language denoted by a regular expression is said to be a regular set.

40. Compare the features of DFA and NFA. (AN) (May/June 2014)

1. DFA” stands for “Deterministic Finite Automata” while “NFA” stands for

“Nondeterministic Finite Automata.”

2. Both are transition functions of automata. In DFA the next possible state is

distinctly set while in NFA each pair of state and input symbol can have many

possible next states.

3. NFA can use empty string transition while DFA cannot use empty string

transition.

4. NFA is easier to construct while it is more difficult to construct DFA.

5. Backtracking is allowed in DFA while in NFA it may or may not be allowed.

6. DFA requires more space while NFA requires less space.

7. While DFA can be understood as one machine and a DFA machine can be

constructed for every input and output, 8.NFA can be understood as several little

machines that compute together, and there is no possibility of constructing an

NFA machine for every input and output.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 10

41. Write a regular expression to describe a language consist of strings made of even

numbers a and b. (C) (Nov/Dec 2014)

(aa | bb)* ((ab | ba) (aa | bb)* (ab | ba) (aa | bb)*)*

42. State the kinds of data that appear in activation record? (U) (Nov/Dec 2015)

Local data :is a data that is local to the execution of procedure is stored in this field of

activation record.

43. What does a semantic analysis do?(R)

Semantic analysis is one in which certain checks are performed to ensure that

components of a program fit together meaningfully. Mainly performs type checking

44. What is a regular expression? State the rules, which define regular expression?(R)

Apply the rules used to define a regular expression. Give Example. (Apr/May 2018)

State the rules to define regular expression. (Nov/Dec 2018)

Regular expression is a method to describe regular language

1) If a is a symbol in Σ,then a is a regular expression that denotes {a}

2) Suppose r and s are regular expressions denoting the languages L(r) and L(s)

 Then,

a) (r)/(s) is a regular expression denoting L(r)U L(s).

b) (r)(s) is a regular expression denoting L(r)L(s)

c) (r)* is a regular expression denoting L(r)*.

 d) (r) is a regular expression denoting L(r).

45. What are the Error-recovery actions in a lexical analyzer?(R)

1. Deleting an extraneous character

2. Inserting a missing character

3. Replacing an incorrect character by a correct character

4. Transposing two adjacent characters

46. Construct Regular expression for the language(C)(Nov/Dec 2018)

L= {w ε{a,b}/w ends in abb}

Ans: {a/b}*abb.

47. What are the various parts in LEX Program? (Apr/May 2017)
DECLARATIONS

%%

RULES

%%

AUXILIARY FUNCTIONS

48. List the rules that form the BASIS.(NOV/DEC 2021)

There are two rules that form the basis:

1. ε is a regular expression and L(ε) is {ε}, that is, the language whose sole

member is the empty string.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 11

2. If a is a symbol in Σ, then a is a regular expression, and L(a) = {a}, that is, the

language with one string, of length one, with a in its one position.

49. What is the role of lexical analyzer phase?(R) (NOV/DEC 2017)

The main role of lexical analyzer is to read the input characters of the source program,

and produce as output a sequence of tokens that the parser uses for syntax analysis.The

lexical analyzer is implemented as a sub-routine or co-routine of the parser.

50. Differentiate NFA and DFA.(AN) (NOV/DEC 2017)

NFA DFA

Deterministic Finite Automaton is a FA in

which there is only one path for a specific input

from current state to next state. There is a

unique transition on each input symbol.

NFA or Non Deterministic Finite

Automaton is the one in which there exists

many paths for a specific input from current

state to next state.

DFA cannot use Empty String transition NFA can use Empty String transition.

DFA can be understood as one machine
NFA can be understood as multiple little

machines computing at the same time.

DFA will reject the string if it end at other than

accepting state

If all of the branches of NFA dies or rejects

the string, we can say that NFA reject the

string.

For Every symbol of the alphabet, there is only

one state transition in DFA.

We do not need to specify how the NFA

reacts according to some symbol.

51. List the attributes stored in symbol table.

Variable names and constants

Procedure and function names

Literal constants and strings

Compiler generated temporaries

Labels in source languages

52. Why is compiler optimization essential?

The code optimization in the synthesis phase is a program transformation technique,

which tries to improve the intermediate code by making it consume fewer resources (i.e.

CPU, Memory) so that faster-running machine code will result.

53. Write the regular expression for all valid identifiers.

Identifier: [_a-zA-Z][_a-zA-Z0-9]*

54. Programmer A has written a program which needs to be modified very

frequently.Which of the 2 languages Visual Basic (or) C++ can he use for his

programming? Justify in 2 sentences.(Neglect other technical and environmental

considerations) (APRIL/MAY 2022)

 Python is preferable. It uses interpreter for converting source program to object

program. Since, programmer A has written a program it needs to be modified very

frequently,interpreter ,that converts the source program line by line is preferable.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 12

PART – B

1. Describe the following software tools (U)(April/May 2011)

 i. Structure Editors

 ii. Pretty printers

 iii. Interpreters

2. Write in detail about the cousins of the compiler. (C)(May/June 2008)(May/June

2013,Nov/Dec 2013)
3. Explain the various phases of compiler in detail, with a neat sketch. (U)(April/May 2008)

 (May/June 2012)(Nov/Dec 2016)(NOV/DEC 2017)(APR/MAY 2018)(NOV/DEC

 2021)

4. Elaborate on grouping of phases in a compiler. (U)(May/June 2013) (May/June 2008)

5. Explain the various phases of a compiler in detail. Also write down the output of the

followingexpression after each phase a: =b*c-d. (U)(May/June 2009)

6. What are the phases of the compiler? Explain the phases in detail. Write down the output

of each phase for the expression a=b*c+50-d. (U)(May/June 2013)

7. Explain various phases of compiler in detail.Write the output of each phase of the

compiler for the expression C:=a+b*12 (U) (May/June 2019)

8. What are the phases of the compiler? Explain the phases in detail. Write down the output

of each phase for the expression a: = b + c *60(R)(April/May 2017)

9. Write a short note on front and back end of the compiler. (U)

10. Explain Symbol table management and error handling(R)

11. Explain compiler construction tools in the compiler.(OR)What are the characteristics of

compiler construction tools?Explain how compiler construction tool help in

implementation of various phases of a compiler. (R)(Nov/Dec 2014, Apr/May 2015)

 (April/May 2017) (Nov/Dec 2016)(Nov/Dec 2018)(April/May 2019) (NOV/DEC

 2021)

12. Explain cousins of compiler (R)(Nov/Dec 2008) (April/May 2017)

13. Define the following terms: Compilers, Interpreter, Translator and differentiate between

them (R)(May/June 2014)

14. Explain in detail the process of compilation. Illustrate the output of each phase of

compilation for the input: a = (b+c)*(b+c)*2. (E)(May/June 2014) (Nov/Dec 2018)

15. Explain the need for grouping of phases of a compiler

(R)(Nov/Dec2014)(Nov/Dec2016)(NOV/DEC 2021)

16. Explain in detail about language processing system.(R)

17. Analyze the given expressions 4:*+=cba with different phases of the compiler(AN)

18. Draw the transition diagram for relational operators and unsigned numbers. (C)

(April/May 2017)(APR/MAY 2018)

19. Explain the various errors encountered in different phases of a compiler.(U)(Nov/Dec

2016)(NOV/DEC 2021)

20. What are compiler construction tools?Write note on each compiler construction

tool.(U)(NOV/DEC 2017)

21. Draw a diagram for the compilation of a machine language processing system.(C)

(APR/MAY 2018)

22. Apply the analysis phases of compiler for the following assignment statement.

Position:=initial+rate*60(AP) (APR/MAY 2018)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 13

23. Outline the compiler construction tools can be used to implement various phases of a

compiler.(R)(APR/MAY 2018)

24. Draw NFA for the regular expression ab*/ab.(C) (May/June 2014)

25. Explain in detail about the role of Lexical analyzer with the possible error recovery

actions.(U)(May/June 2009,2013, Apr/May 2015)(Nov/Dec2011, 2018)

26. Elaborate specification of tokens. (U)(May/June 2013) (May/June 2008)

27. Explain the role performed by lexical analysis of the compiler. (U)(April/May

2011)(Nov/Dec 2016)(or) Analyze the role of lexical analyzer with suitable

examples.(AN)(May/June 2019)

28. Differentiate between lexeme, token and pattern. (AN)(May/June 2014) (May/June

2016)(Apr/May 2017)(Nov/Dec 2018)
29. What are the issues in Lexical Analysis?(R) (May/June 2014)(May/June

2016)(Apr/May 2017) (NOV/DEC 2017)

30. Write notes on regular expression. (R)(May/June 2016)

31. Prove that the following two regular expressions are equivalent by showing that the

minimum state DFA’s are same. (E) (Apr/May 2015)

i. (a/b)*

ii. (a*/b*)*

32. Explain specification and recognition of tokens. (U) (Nov/Dec 2014) (Nov/Dec 2018)

33. Write an algorithm for minimizing the number of states of a DFA. (R)(Nov/Dec 2016)

34. Write notes on regular expression to NFA.Construct Regular expression to NFA for the

Sentence (a|b) * a (A) (May/June 2016)

35. Construct DFA to recognize the language (a/b)*ab(A) (May/June 2016)

36. Distinguish between context free grammar and regular expressions(AN)(Nov/Dec

2015)
37. State and explain the architecture of a transition – diagram- based lexical analyzer.

(U)(Nov/Dec 2015)
38. How to minimize the number of states of DFA. Explain it with example.

(AN)(Nov/Dec 2015)
39. Explain the procedure for construction of an NFA from a regular expression

(U) (Nov/Dec 2015)(NOV/DEC 2021)
40. What are the functions computed from the syntax tree. Explain each function with

example. (R)(Nov/Dec 2015)

41. Convert a Regular Expressionabb(a|b)* to DFA using direct method and minimize

it.(C)(Apr/May 2017)

42. Draw transition diagram for relational operators and unsigned numbers.(C)(Apr/May

2017)
43. Discuss how finite automata is used to represent tokens and perform lexical analysis with

examples.(U)(Nov/Dec 2016)

44. Conversion of regular expression (a/b)*abb to NFA.(U)(Nov/Dec 2016)\

45. Draw NFA for regular expression ab*/ab.(C) (NOV/DEC 2017)

46. Write an algorithm to convert NFA to DFA and minimized DFA.Give an example. (U)

(NOV/DEC 2017)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 14

47. Considering the alphabetΣ ={0,1}.Construct a Non deterministic Finite Automata(NFA)

using the Thompson construction that is able to recognize the sentences generated by the

regular expression(1*01*0)*1*.(C) (APR/MAY 2018)

48. Illustrate how does LEX works?(U)(APR/MAY 2018)

49. Consider the regular expression below which can be used as part of a specification of the

definition of exponents in floating point numbers. Assume that the alphabet consists of

numeric digits (‘0’ through ‘9’) and alphanumeric characters (‘a’ through ‘z’ and ‘A’

through ‘Z’) with the addition of a selected small set of punctuation and special

characters.(say in this example only the characters ‘+’ and ‘-‘ are relevant).Also ,in this

representation of regular expressions the character ‘.’ Denotes concatenation.

Exponent=(+|-|ε).(E|e).(digit)+

(i) Derive an NFA capable of recognizing its language using Thompson construction.

(ii) Derive the DFA for the NFA found in a) abouve using the subset construction.

(iii) Minimize the DFA found in (ii) above using the interactive refinement algorithm

described in class.(C)(APR/MAY 2018)

50. Explain the functions of the Lexical Analyzer with its implementation(U)

51. What are Lex and Lex specification? How lexical analyzer is constructed using lex?Write

a Lex program that recognizer the tokens. (C)

52. Explain conversion of regular expression to DFA with an example. (U)

53. Explain in detail about converting a Regular Expression into a Deterministic Finite

Automaton (U)

54. Construct the minimized DFA for the RE (0+1)*(0+1)01.

55. Draw and explain the translation diagram that recognizes the lexemes matching the

token relop(relational operator). (C)(APR/MAY 2019)

56. Write the subset construction algorithm.Using the subset constructionalgorithm,convert

the regular expression(a|b)*abb to DFA.

57. In SQL,keywords and identifiers are case-insensitive.Write a Lex program that

recognizes the keywords SELECT,FROM,and WHERE(in any combination of capital

and lower-case letters),and token ID,which may be any sequence of letters and

digits,beginning with a letter.C)(APR/MAY 2019)(NOV/DEC 2021)

58. Explain the procedure for constructing a DFA from an NFA with example.(NOV/DEC

2021)
59. Draw the transition graph for an NFA that recognizes the language aa*/bb*.(NOV/DEC

2021)
60. How to minimize the number of states of DFA? Explain it with an example.(NOV/DEC

2021)
61. How a finite automaton is used to represent tokens and perform lexical analysis with

examples. (NOV/DEC 2021)

62. Compare and Contrast NFA and DFA. (NOV/DEC 2021)

63. Elaborate on the different phases of a compiler with a neat sketch. Show the output of

each phases of the compiler when the following statement is parsed.

SI=(p*n*r)/100

Where, n should be an integer

P and r could be a floating point numbers (APR/MAY 2022)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 15

64. Convert the following NFA to DFA.(April/May 2022)

65. Find transition diagrams for the following regular expression and regulardefinition.

 (NOV/DEC 2021)

• a(a|b)*a

 • ((|a)b*)*

 • All strings of digits with at most one repeated digit.

 • All strings of a’s and b’s that do not contain the substring abb.

 • All strings of a’s and b’s that do not contain the subsequence abb

UNIT II SYNTAX ANALYSIS

Part- A

1. Define parser. (R) (April/May 2011)
The parser obtains a string of tokens from the lexical Analyzer and verifies that the string of

token names can be generated by the grammar for the source language.
The parsers reports any syntax errors and to recover from commonly occurring errors to

continue processing the remainder of the program.

2. Mention the basic issues in parsing. (R)

There are two important issues in parsing.

· Specification of syntax

· Representation of input after parsing.

3. Define a context free grammar. (R) (May/June 2009)

A context free grammar G is a collection of the following

· V is a set of non terminals

· T is a set of terminals

· S is a start symbol

· P is a set of production rules

G can be represented as G = (V,T,S,P)

Production rules are given in the following form

Non terminal -> (V U T)*

4. Briefly explain the concept of derivation. (U)

Derivation from S means generation of string w from S. For constructing derivation two

things are important.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 16

i) Choice of non terminal from several others.

ii) Choice of rule from production rules for corresponding non terminal. Instead of

 choosing the arbitrary non terminal one can choose either

leftmost derivation – leftmost non terminal in a sentinel form

 or

rightmost derivation – rightmost non terminal in a sentinel form

5. Define ambiguous grammar. (R)(May/June 2016) (NOV/DEC 2021)

A grammar G is said to be ambiguous if it generates more than one parse tree for some

sentence of language L(G).

i.e. both leftmost and rightmost derivations are same for the given sentence.

Demerit :

It is difficult to select or determine which parse tree is suitable for an input strin

6. What is operator precedence parser? (R) (April/May 2011)

A grammar is said to be operator precedence if it possess the following properties:

1. No production on the right side is e.

2. There should not be any production rule possessing two adjacent non terminals at the

right hand side.

7. List the properties of LR parser. (R) (May/June 2012)
1. LR parsers can be constructed to recognize most of the programming languages for

 which the context free grammar can be written.

2. The class of grammar that can be parsed by LR parser is a superset of class of

 grammars that can be parsed using predictive parsers.

3. LR parsers work using non backtracking shift reduce technique yet it is efficient one.

8. Mention the types of LR parser. (R) (May/June 2012)

 · SLR parser- simple LR parser

 · LALR parser- lookahead LR parser

 · Canonical LR parser

9. What are the problems with top down parsing? (R)
The following are the problems associated with top down parsing:

 · Backtracking

 · Left recursion

 · Left factoring

 · Ambiguity

10. Write the algorithm for FIRST and FOLLOW. (C)(May/June 2009) (April/May

2011) (May/June 2016)

FIRST

1. If X is terminal, then FIRST(X) IS {X}.

2. If X -> e is a production, then add e to FIRST(X).

3. If X is non terminal and X -> Y1,Y2..Yk is a production, then place a in FIRST(X) if

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 17

for some i , a is in FIRST(Yi) , and e is in all of FIRST(Y1),…FIRST(Yi-1);

FOLLOW

1. Place $ in FOLLOW(S),where S is the start symbol and $ is the input right endmarker.

2. If there is a production A ->aBß, then everything in FIRST(ß) except for e is placed in

 FOLLOW(B).

3. If there is a production A ->aB, or a production A->aBß where FIRST(ß) contains e ,

 then everything in FOLLOW(A) is in FOLLOW(B).

11. List the advantages and disadvantages of operator precedence parsing.(R)

Advantages

This type of parsing is simple to implement.

Disadvantages

1. The operator like minus has two different precedence (unary and binary).Hence it is

 hard to handle tokens like minus sign.

2. This kind of parsing is applicable to only a small class of grammars.

12. What is dangling else problem? (R) (May/June 2012)

Ambiguity can be eliminated by means of dangling-else grammar which is shown below:

stmt-> if expr then stmt

 | if expr then stmt else stmt

 | other

13. Write short notes on YACC. (U)

YACC is an automatic tool for generating the parser program.

Basically YACC is an LALR parser generator. It can report conflict or ambiguities in the

form of error messages.

14. What is meant by handle pruning?(U)(Nov/Dec 2016)((APR/MAY 2018, 2019)

A rightmost derivation in reverse can be obtained by handle pruning.

If w is a sentence of the grammar at hand, then w -> n, where -> n is the nth right-

sentential form of some as yet unknown rightmost derivation

 S = -> 0 =>-> 1…=>-> n-1 => -> n = w

15. Define LR(0) items. (U) (May/June 2011))(Nov/Dec 2018)

An LR(0) item of a grammar G is a production of G with a dot at some position on the

right side. Thus, production A -> XYZ yields the four items

 A->.XYZ

 A-> X.YZ

 A-> XY.Z

 A-> XYZ.

16. What is meant by viable prefixes?(U)

The set of prefixes of right sentential forms that can appear on the stack of a shift-reduce

parser are called viable prefixes. An equivalent definition of a viable prefix is that it is a

prefix of a right sentential form that does not continue past the right end of the rightmost

handle of that sentential form.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 18

17. Define handle. (U) (April/May 2011)
A handle of a string is a substring that matches the right side of a production, and whose

reduction to the nonterminal on the left side of the production represents one step along

the reverse of a rightmost derivation.

 A handle of a right – sentential form -> is a production A-> ß and a position of ->

where

the string ß may be found and replaced by A to produce the previous right-sentential form

in a rightmost derivation of ->. That is , if S =>aAw =>aßw,then A-> ß in the position

following a is a handle of aßw.

18. What are kernel & non-kernel items?(R) (NOV/DEWC 2021)

Kernel items, which include the initial item, S'->.S, and all items whose dots are not at

the left end. On-kernel items, which have their dots at the left end.

19. What is phrase level error recovery? (R) (May/June 2010)

Phrase level error recovery is implemented by filling in the blank entries in the predictive

parsing table with pointers to error routines. These routines may change, insert, or delete

symbols on the input and issue appropriate error messages. They may also pop from the

stack.

20. What is a parse tree? (R) (Nov/Dec 2008)
A parse tree may be viewed as a graphical representation for a derivation that filters out

the choice regarding a replacement order. Each interior node of a parse tree is labeled by

some nonterminal A and that the children of the node are labeled from left to right by

symbols on the right side of the production by which this A was replaced in the

derivation. The leaves of the parse tree are terminal symbols.

21. What are the disadvantages of operator precedence parsing? (R) (May/June 2007)
(i) It is hard to handle tokens like the minus sign, which has two different precedences.

(ii) Since the relationship between a grammar for the language being parsed and the

operator – precedence parser itself is tenuous, one cannot always be sure the parser

accepts exactly the desired language.

(iii)Only a small class of grammars can be parsed using operator precedence techniques.

22. Define left factoring. (U) (April/May 2011)(NOV/DEC 2021)
Left factoring is a grammar transformation that is useful for producing a grammar
suitable for predictive parsing. The basic idea is that when it is not clear which of two
alternative productions to use to expand a nonterminal “A”, we may be able to rewrite the
“A” productions to refer the decision until we have seen enough of the input to make the
right choice.

23. What do you mean by viable prefixes? (U) (May/June 2012)

The set of prefixes of right sentential forms that can appear on the stack of a shift-reduce

parser are called viable prefixes. An equivalent definition of a viable prefix is that it is a

prefix of a right sentential form that does not continue past the right end of the rightmost

handle of that sentential form.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 19

24. What are the goals of error handler in a parser? (U) (May/June 2010)
It should report the presence of errors clearly and accurately. It should recover from each

error quickly. It should not significantly slow down the processing of correct programs.

25. What is phrase level error recovery?(R) (Nov/Dec 2008)

Phrase level error recovery is implemented by filling in the blank entries in the

predictive parsing table with pointers to error routines. These routines may change, insert,

or delete symbols on the input and issue appropriate error messages. They may also pop

from the stack.

26. Eliminate left recursion from the following grammar.(E) (April/May 2011)
A->Ac/Aad/bd/c.

Solution
A->bdA’

A->cA’

A’->cA’

A’->adA’

A’->ἐ

27. What is LL (1) grammar? Give the properties of LL (1) grammar. (R)(May/June

2013)

LL(1) GRAMMARS AND LANGUAGES. A context-free grammar G = (VT, VN, S, P)

whose parsing table has no multiple entries is said to be LL(1). In the name LL(1),

the first L stands for scanning the input from left to right, the second L stands for

producing a leftmost derivation, and the 1 stands for using one input symbol of

lookahead at each step to make parsing action decision. A language is said to be LL(1) if

it can be generated by a LL(1) grmmar. It can be shown that LL(1) grammars are not

ambiguous and not left-recursive.

28. What is Left Factoring a Grammar?(R) (May/June 2009)

Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive parsing.

29. Define Lexeme. (U)(May/June 2014)

The character sequence forming a token is called lexeme for the token.

30. Eliminate left recursion from the following grammar.(AP) (April/May 2017)
A->Ac/Aad/bd.

Solution:

A->bdA’

A’->cA’|adA’|ἐ

31. What are the various conflicts that occur during shift reduce

parsing?(R)(April/May 2017)

The entire stack contents and the next input symbol cannot decide whether to shift or

reduce.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 20

32. Construct a parse tree for -(id + id)(C) (Nov/Dec 2017)

Given the following grammar

E -> E + E | E * E | (E) | - E | id

Lets examine this derivation:

E ⇒ -E ⇒-(E) ⇒ -(E + E) ⇒ -(id + id)

33. Draw syntax tree for the expression a=b*-c+b*-c.(C) (NOV/DEC 2017)

34. Summarize merits and demerits of LALR parser.(AN) (Apr/May 2018)

LALR is more or less a hack for LR parsers to make the tables smaller. The tables for an

LR parser can typically grow enormous. LALR parsers give up the ability to parse all LR

languages in exchange for smaller tables. Most LR parsers actually use LALR (not

secretively though, you can usually find exactly what it implements).

LALR can complain about shift-reduce and reduce-reduce conflicts. This is caused by the

table hack: it 'folds' similar entries together, which works because most entries are empty,

but when they are not empty it generates a conflict. These kinds of errors are not natural,

hard to understand and the fixes are usually fairly weird.

35. How do you identify predictive parser and non recursive predictive parser?(U)

(APR/MAY 2018)(NOV/DEC 2021)

Predictive parser is top – down parsing. An efficient non-backtracking form of top-

down parser called a predictive parser. LL(1) grammars from which predictive parsers

can be constructed automatically.

Non recursive predictive parsing can be performed using a pushdown stack, avoiding

recursive calls.

36. Write short notes on YACC. (or)

Mention the purpose of YACC.(May/June 2019)(U)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 21

YACC is an automatic tool for generating the parser program.

YACC stands for Yet Another compiler which is basically the utility available for UNIX.

Basically YACC is LALR parser generator.

It can report conflict or ambiguities in the form of error messages.

37. What are the different stages that a parser can recover from a syntactic error?(U)

 (Nov/Dec 2018)

 Panic mode

 Statement Mode recovery

 Error production

 Global Correction

38. Writedown the CFG for the set of odd length srings in {a,b}* whose first,middle and

last symbols are same. (NOV/DEC 2021)

SaS1aS1a|bS1bS1b

SaS1a|aS1b|bS1a|bS1b| ἐ

39. List out the steps for performing LR parsing.(NOV/DEC 2021)

1. Creation of augmented grammar G’

2. Create FIRST and FOLLOW for all the Nonterminals of G’

3. Create LR items of G’

4. Create LR parsing Table

5. Perform LR parsing

PART-B

1. What is the FIRST and FOLLOW? Explain in detail with an example. Write down the

necessary algorithm. (C)(Nov/Dec 2008)

2. Construct Predictive Parsing table for the following grammar: (May/June 2013)

S -> (L) / a

L -> L, S/S

and check whether the following sentences belong to that grammar or

not.

(i) (a,a)

(ii) (a, (a , a))

(iii) (a, ((a , a), (a , a))) (C)

3. Construct a predictive parsing table for the grammar

S → (L)|a

L → L,S|S

and show whether the following string will be accepted or not.

(a,(a,(a, a))) .(Nov/Dec 2021)

4. Construct the predictive parser for the following grammar: (C)(Nov/Dec 2007)

(April/May 2017)

S -> (L)|a

L -> L,S|S.

And show whether the following string will be accepted or not.(a,(a, (a , a)))

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 22

5. Construct the behaviour of the parser on sentence (a, a) using the grammar:

S -> (L)|a

L -> L,S|S. (A)(May/June 2009)

6. Check whther the following grammar can be implemented using predictive parser.Check

whether the string “abfg” is accepted or not using predictive parsing.

AA

AaB|Ad

BbBC|f

Cg(April/May 2022)
7. Check whther the following grammar can be implemented using predictive

 parser.Check whether the string “(a,a)” is accepted or not using predictive parsing.
S(L)|a

LL,S|S(April/May 2022)

8. For the grammar given below, calculate the operator precedence relation and the

precedence functions. (E) (May/June 2008) (May/June 2012)

E -> E + E | E – E | E * E | E / E | E ^ E | (E) | -E | id

9. Check whether the following grammar is a LL(1) grammar (E)

S ->iEtS | iEtSeS | a

E -> b

Also define the FIRST and FOLLOW procedures. (Nov/Dec 2007) (May/June 2009)

10. Consider the grammar given below. (May/June 2012,2019)

E->E+T

E->T

T->T*F

T->F

F->(E)

F->id.

Construct an LR Parsing table for the above grammar. Give the moves of LR parser on

id*id+id. (C)

11. What is a shift-reduce parser? Explain in detail the conflicts that may occur during shift-

reduce parsing. (R)

12. Consider the following grammar:

S - >AS|b

A ->SA|a.

Construct the SLR parse table for the grammar. Show the actions of the parser for the

input string “aba”. (C) (May/June 2014)

13. What is an ambiguous grammar? Is the following grammar ambiguous? Prove

E-> E+E|E*E|(E)|id. (E) (May/June 2014)

14. Generate SLR Parsing table for the following grammar.

S->As|bAc|Bc|bBa

A-> d

B->d (C) (Apr/May 2015)

15. Write down the algorithm to eliminate left recursion and left factoring and apply both to

the following grammar. (C) (Apr/May 2015)

E-> E+T|E*|T

T->a|b|(E)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 23

16. Find the LALR for the given grammar and parse the sentence (a+b) *c.(C)

E-> E + T | T

T-> T * F|F

F-> (E)|id. (Nov/Dec 2014)

17. What is an ambiguous grammar? Is the following grammar ambiguous? Prove

E-> E+E|E*E|(E)|id. (AN)(May/June 2014)

18. Construct stack implementation of shift reduce parsing for the grammar
E->E+S

E->E*E

E->(E)

E->id and the input string id1+id2*id3(C)(MAY/JUNE 2016)

19. Explain LL(1) grammar for the sentence S->iEts | iEtSeS | a E->b(U)(MAY/JUNE 2016)

20. Write an algorithm for Non recursive predictive parsing . (C)(MAY/JUNE 2016)

21. Explain Context Free grammers with examples (U)(MAY/JUNE 2016)

22. Distinguish between context free grammar and regular expressions. (A)(NOV/DEC 2015)

23. What are the conflicts during shift – reduce parsing? Explain(U)(NOV/DEC 2015)

24. Consider the grammar

E-> E + T | T

T-> TF|F

F-> F*|a|b

 Construct the SLR parsing table for the above grammar.(C) (NOV/DEC 2016)(NOV/DEC

 2021)
25. Construct parse tree for the input string w=cad using topdown parser.

S→cAd

A→ab|a (C)(NOV/DEC 2016)

26. Construct parsing table for the grammar and find moves made by predictive parser on

input id+id*id and find FIRST and FOLLOW.

 E→E+T

 E→ T

 T→T*F

 T→F

 F→(E)/id (C) (NOV/DEC 2016)

27. Explain ambiguous grammer G: E→E+E| E*E| (E) | -E| id for the sentenceid+id*id.(U)

(NOV/DEC 2016)

28. Construct SLR parsing Table for the following grammer:

G: E→E+T| TT→T*F| FF→(E) | id.(C) (NOV/DEC 2016)

29. Explain LR parsing algorithm with an Example.(R) (NOV/DEC 2017)

30. Explain the non recursive implementation of predictive parsers with the help of the

grammar. (U) (NOV/DEC 2017)

E-> E + T | T

T-> T * F|F

F-> (E)|id.

31. Consider the context-Free Grammar (CFG) depicted below where “begin”,”end” and “x”

are all terminal symbols of the grammar and stat is considered the starting symbol for this

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 24

grammar.Productions are numbered in parenthesis and you can abbreviate “begin” to “b”

and “end” to “e” respectively.

Block->Block

Block->begin Block end

Block->Body

Body->x

(i) Compute the set of LR(1) items for this grammar and draw the corresponding

DFA.Do not forget to augment the grammar with the initial production S->start$

as the production(0).

(ii) Construct the corresponding LR parsing table. (C) (APR/MAY 2018)

32. Consider the following CFG grammar over the non-terminals{X,Y,Z} and the terminals

{a,c,d} with the productions below and start symbol Z.

X->a

X->Y

Z->d

Z->X Y Z

Y->c

Y->ε

 Compute the FIRST and FOLLOW sets of every non-terminal and the set of non-

terminals that are nullable.(C) (APR/MAY 2018)

33. Consider the following CFG grammar,

S->aABe

A->Abc|b

B->d

Where a,b,c,d,e are terminals,’S’ (start symbol), A and B are non-terminals.

(a) Parse the sentence “abbcde” using right most derivation

(b) Parse the sentence “abbcde” using left-most derivations.

(c) Draw the parse tree.(C) (APR/MAY 2018)

34. Consider the following grammar

E-> E+E|E*E|(E)|id.

(i) Find the SLR parsing table for the given grammar.

(ii) Parse the sentence: (a+b)*c.(C) (APR/MAY 2018)

35. Check whether the following grammar is SLR (1) or not. Explain your answer with

reasons.

S-> L=R

S->R

L->*R

L->id

R->L

36. Write grammar for the following languages the set of non-integers with no leading

zeros.(U)

37. Write a context free grammar that generates all numbers; numbers can be integer or

real.(U)

38. Write the algorithm for construction of LALR parsing table for a givengrammar. Using

the algorithm for construction of LALR parsing tableconstruct the LALR parsing table

for the following grammar. (AP)(APR/MAY 2018)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 25

S'->S

 S->aAd|bBd|aBe|bAe

 A->c

 B->c

39. Show that the following grammar(An)(NOV/DEC 2018)

SAa/bAc/dc/bda

Aa is LALR(1) but not SLR(1).

40. Show that the following grammar(An)(NOV/DEC 2018)

SAa/bAc/Bc/bBa

Ad

Bd is LR(1) but not LALR(1).

41. Construct LR(0) items for this following grammar and draw the transition Representing

transition among CLR items

SCC

CcC

Cd

42. Show the wether the string “cdcd” is accepted by this grammar or not.

 (i) What is SLR (1) parser. Describe the Steps for the SLR parser.

(ii) Give a rightmost derivation for (a, (a, a)) and show the handle of each right-

 sentential form.

43. Describe the LR parsing algorithm with an example(NOV/DEC 2021)

UNIT III INTERMEDIATE CODE GENERATION

Part- A

1. Give the syntax-directed definition for if-else statement. (U) (May/June 2011)

1. S -> if E then S1

E.true := new_label()

E.false :=S.next

S1.next :=S.next

S.code :=E.code | | gen_code(E.true ‘: ‘) | | S1.code

2. S -> if E then S1 else S2

E.true := new_label()

E.false := new_label()

S1.next :=S.next

S2.next :=S.next

S.code :=E.code | | gen_code(E.true ‘: ‘) | | S1.code| | gen_code(‘go to’,S.next) |

|gen_code(E.false ‘:’) | | S2.code

2. What is a syntax tree? Draw the syntax tree for the assignment statement

 a := b * -c + b * -c. (U) (Nov/Dec 2012)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 26

A syntax tree depicts the natural hierarchical structure of a source program.

Syntax tree:

 assign

 a +

 * *

 b uminus b uminus

 c c

3. Define procedure definition(R)

A procedure definition is a declaration that, in its simplest form, associates an identifier

with a statement. The identifier is the procedure name, and the statement body. Some of

the identifiers appearing in a procedure definition are special and are called formal

parameters of the procedure. Arguments, known as actual parameters may be passed to a

called procedure; they are substituted for the formal in the body.

4. Define activation trees(R)

A recursive procedure p need not call itself directly; p may call another procedure q,

which may then call p through some sequence of procedure calls. We can use a tree

called an activation tree, to depict the way control enters and leaves activation. In an

activation tree

a) Each node represents an activation of a procedure,

b) The root represents the activation of the main program

c) The node for a is the parent of the node for b if an only if control flows from activation

 a to b, and

d) The node for a is to the left of the node for b if an only if the lifetime of a occurs

 before the lifetime of b.

5. Write notes on control stack(U)

A control stack is to keep track of live procedure activations. The idea is to push the node

for activation onto the control stack as the activation begins and to pop the node when

the activation ends.

6. Write the scope of a declaration(U)

A portion of the program to which a declaration applies is called the scope of that

declaration. An occurrence of a name in a procedure is said to be local to if it is in the

scope of a declaration within the procedure; otherwise, the occurrence is said to be

nonlocal.

7. What do you mean by syntax directed translation scheme? (R)(APR/MAY 22)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 27

For checking the semantics , each production of context -free grammar is related with a

set of semantic rules or actions and each grammar symbol is related to asset of Attributes.

Thus the grammar and the group of semantic actions combine to make syntax directed

definitions.

8. Write the translation scheme for (U)

while (i<10)

{x := 0;

i := i + 1;

}

S.begin = new_label() = L1

E.true = new_label() = L2

E.code= “if i<10 goto”

E.false = S.next = Lnext

S1.code = x =0; i = i + 1

9. Draw the diagram of the general activation record and give the purpose of any two

fields. (C)(April/May 2011)

 It is used to store the current record and the record is been stored in the stack.

 It contains return value .After the execution the value is been return.

 It can be called as return value. Parameter

 It specifies the number of parameters used in functions.

Activation Record:

An activation is an execution of a subprogram. In most languages, local variables are

allocated when this execution begins (activation time).

The storage (for formals, local variables, function results etc.) needed for an activation is

organized as an activation record (or frame).

10. Define Symbol Table. (R) (May/June 2014) (Nov/Dec 2016)

A Symbol table is a data structure containing a record for each identifier, with fields for

the attributes of the identifier. The data structure allows us to find the record for each

identifier quickly and to store or retrieve data from that record quickly.

11. Mention the rules for type checking.(R)(Apr/May 2017)

Express the rule for checking the type of a function(Nov/Dec 2021)

 Type Synthesis – Builds the type of an expression from the types of its

subexpressions – Requires names to be declared before usage.

 Type inference – determines the type of a construct from the way it is used.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 28

12. Write down syntax directed definition of a simple desk calculator.

13. Draw the activation tree for the following code:(C) (Apr/May 2018)

int main(){

printf(“enter your name”)’

scanf(“%s”,username);

intshow_data(username);

printf(“Press any key to continue”);

intshow_data(char *user)

{

printf(“Your name is %s”,username);

return 0;}}

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 29

14. Compare syntax tree and parse tree.(AN) (Nov/Dec 2017)

15. List three kinds of intermediate representation.(R)(Nov/Dec 2018)

There are varieties of forms to represent the intermediate code such as three address code,

quadruple, triple, postfix.

16. When procedure call occurs, what are the steps taken? (Nov/Dec 2018)

When compiling a call to a procedure or function, each actual parameter is checked to see

that it matches in kind and type with the corresponding formal parameter of the

procedure's declaration.

17. What are the various ways of passing a parameter to a function? (Apr/May 2019)

Call-by-Value

Call-by-Reference

Copy-Restore

Call-by-Name

18. Write the grammar for flow control statement while-do.(Apr/May 2019)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 30

19. State the type expressions.(NOV/DEC 2021)

The type of a language construct is denoted by a type expression.

• A type expression can be: – A basic type (also called primitive types)

• a primitive data type such as integer, real, char, boolean, …

Type name : a name can be used to denote a type expression

20. Convert the following statement into three address codes x=a+(b*-c)+(d*-e)

Represent the three address code by tripes.(APR/MAY 2022)

t1=UMINUS(c)

t2=b*t1

t3=UMINUS(e)

t4=d*t3

t5=a+t2

t6=t5+t4

x=t6

PART-B

1. Give a syntax directed definition to differentiate an expression formed by applying the

arithmetic operators * and to the variable x and constants.

Expression: x * (3*x | x * x) (AP) (Apr/May 2015)

2. What is an activation record? Explain how it’s relevant to the intermediate code

generation phase with respect to procedure declarations. (U) (Apr/May 2015)

3. Discuss specification of a simple type checker (A) (Apr/May 2017)

4. Distinguish between quadruples and triples with examples.(E)(Nov/Dec 2015)

5. What are the rules for type checking? Give an example. (R) (Nov/Dec 2015)

6. State and explain the algorithm for unification. (U) (Nov/Dec 2015)

7. A Syntax-Directed Translation scheme that takes strings ofa’s, b’s and c’s as input and

produces as output the number of substrings in the input string that correspond to the

pattern a(a|b)*c+(a|b)*b. For example the translation of the input string “abbcabcababc”

is”3”.

(1) Write a context – free grammar that generate all strings osa’s,b’s and c’s.

(2) Give the semantic attributes for the grammar symbols.

(3) For each production of the grammar present a set of rules for evaluation of the

 semantic attributes.(C) (Nov/Dec 2016)

8. Illustrate type checking with necessary diagram.(R) (Nov/Dec 2016)

9. Discuss specification of a simple type checker for statement, expression and

functions.(R) (NOV/DEC 2017)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 31

10. Describe about the contents of activation record.(U) (APR/MAY 2018)(Nov/Dec 2021)

11. Create a parse tree for the following string:stringid+id-id.Check whether the string is

ambiguous or not.(C) (APR/MAY 2018)

12. Construct a Syntax directed translation scheme that translates arithmetic expression from

infix to postfix notation.Using semantic attributes for each of the grammar symbols and

semantic rules,Evaluate the input: 3*4+5*2.(C) (APR/MAY 2018) (Nov/Dec

2018)(Nov/Dec 2021)

13. Explain the design of predictive translator. (U)

14. Explain in detail a simple type checker. (U)

15. Explain the construction of syntax tree with an example. (U)

16. Construct a syntax directed definition for constructing a syntax tree for assignment

statements (C)

 S->is:=E

 E->E1+E2

E->E1*E2

E->-E1

E->(E1)

E->id

17. Differentiate call-by-value and Call-by-reference parameter passing mechanisms with

suitable examples(U) (APR/MAY 2019)

18. Describe syntax-directed translation schemes with appropriate examples.(U)

 (APR/MAY 2019)

19. Explain how type conversion is performed with suitable examples.(U)(APR/MAY 2019)

20. Apply the S-attributed definition and constructs syntax trees for a simple expression

grammar involving only the binary operators + and -. As usual, these operators are at the

same precedence level and are jointly left associative. All nonterminal have one

synthesized attribute node, which represents a node of the syntax tree.

Production:EE+T/T, T(E)/id/num (Nov/Dec 2018)

21. Suppose we have a production ABCD. Each of the four nonterminals has two attributes

s, which is synthesized and I which is inherited. For each set of rules below, check

whether the rules are consistent with (i) an S- attributed definition, (ii) an L-attributed

definition (iii) any evaluation order at all. (Nov/Dec 2018)

(1) A.s=B.i+C.i

(2) A.s=B.i+C.s and D.i=A.i+B.s

(3) A.s=B.s+D.s

(4) A.s=D.i

B.i=A.s+C.s

C.i=B.s

D.i=B.i+C.i

22. Create a parse trees for the following string : string id + id – id. Check whether the

stringis ambiguous or not. (7) (Nov/Dec 2021)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 32

23. (i) Explain about various ways to pass a parameter in a function with example. (6)

(ii) Construct a Syntax-Directed Translation scheme that translates arithmetic

expressions from infix into postfix notation. Using semantic attributes for each of the

grammar symbols and semantic rules, Evaluate the input: 3*4+5*2. (7)

(Nov/Dec 2021)

24. Elucidate the variants of Syntax tree with suitable examples. (Nov/Dec 2021)

25. (i) Write an algorithm for unification with its operation. (Nov/Dec 2021)

26. (ii) Discuss in detail about Translation of array reference. (Nov/Dec 2021)

27. Write the syntax directed translation for the following code

 EE1 or E2

 EE1 and E2

Enot E1

E(E)

Eid1 relop id2

Etrue

Efalse (Apr/May 2022)

28. Write the syntax directed translation for the following code:

 While a<b

do

If c<d

Then

X=y+z

Then

X=y-z (Apr/May 2022)

UNIT IV RUN-TIME ENVIRONMENT AND CODE GENERATION

1. What is the use of run time storage? (U)

The run time storage might be subdivided to hold

a) The generated target code

b) Data objects, and

c) A counterpart of the control stack to keep track of procedure activation.

2. What is an activation record? (R)

Information needed by a single execution of a procedure is managed using a contiguous

block of storage called an activation record or frame, consisting of the collection of fields

such as

a)Return value

b) Actual parameter

c) Optional control link

d) Optional access link

e) Saved machine status

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 33

f) Local data

g) Temporaries

3. What are the storage allocation strategies? (R)(NOV/DEC 2017)

Name different storage allocation strategies used in runtime

environment.(R)(APR/MAY 2018)(NOV/DEC 2021)

List the different storage allocation strategies.(NOV/DEC 2021)ACTIVATION

a) Static allocation lays out storage for all data objects at compile time.

b) Stack allocation manages the run time storage as a stack.

c) Heap allocation allocates and deallocates storage as needed at run time from a data

area known as heap.

4. What is static allocation? (R)

In static allocation, names are bound to storage as the program is compiled, so there is no

need for a run-time support package. Since the bindings do not change at run time, every

time a procedure is activated, its names are bound to the same storage location.

5. What is stack allocation? (R) (May/June 2008)

Stack allocation is defined as process in which manages the run time as a Stack. It is

based on the idea of a control stack; storage is organized as a stack, and activation

records are pushed and popped as activations begin and end.

6. What are the limitations of static allocation? (U)

a) The size of a data object and constraints on its position in memory must be known at

compile time.

b) Recursive procedure is restricted.

c) Data structures cannot be created dynamically.

7. What is dangling references? (R) (May/June 2016)

What does dangling references mean? (Apr/May 2022)
Whenever storage can be deallocated, the problem of dangling references arises. A

dangling reference occurs when there is a reference to storage that has been deallocated.

8. What is heap allocation? (R)

Heap allocation parcels out pieces of contiguous storage, as needed for activation records

or other objects. Pieces may be deallocated in any order, so over time the heap will

consist of alternate areas that are free and in use.

9. What is dangling references? (R) (May/June 2016)

Whenever storage can be deallocated, the problem of dangling references arises. A

dangling reference occurs when there is a reference to storage that has been deallocated.

10. What is heap allocation? (R)

Heap allocation parcels out pieces of contiguous storage, as needed for activation records

or other objects. Pieces may be deallocated in any order, so over time the heap will

consist of alternate areas that are free and in use.

11. Define Garbage. (R)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 34

Dynamically allocated storage can become unreachable. Storage that a program allocates

but cannot refer to is called garbage. Lisp performs garbage collection that reclaims

inaccessible storage.

12. List the dynamic storage allocation techniques? (R)(Nov/Dec 2016)

a) Explicit allocation of Fixed-sized blocks.

b) Explicit allocation of Variable-sized blocks–one method is first-fit method, in this

when a block of size s is allocated; we search for the first free block that is of size f≥ s.

c) Implicit Deallocation–it requires cooperation between the user program and the run-

time package.

13. What are the limitations of static allocation? (U) (May/June 2009)

It lays out storage for all data objects at compile time.

Names are bound to storage as a program is compiled, so there is no need for a run time

support package.

14. What do you mean by binding of names(U)(Apr/May 2017)

When an environment associates storage location s with a name x, we say that x is bound

to s; the association itself is referred to as a binding of x. A binding is the dynamic

counterpart of a declaring.

15. What is meant by call-by-reference? (U)

When parameters are passed by reference, the caller passes to the called procedure a

pointer to the storage address of each actual parameter.

a) If an actual parameter is a name or an expression having l-value, then that l-value itself

is passed.

b) However, if the actual parameter is an expression, then the expression is evaluated in a

new location, and address of that location is passed.

16. What is meant by copy-restore? (R)

A hybrid between call-by-value and call by reference is copy-restore linkage.

1. Before control flows to the called procedure, the actual parameters are evaluated.

2. When control returns, the current r-values of the formal parameters are copied back

into the l-value s of the actual, using the l-values computed before the call.

17. Write notes on call-by-name. (U)

Call-by-name is traditionally defined by the copy-rule of Algol, which is

a) The procedure is treated as if it were a macro; that is, its body is substituted for the call

in the caller, with the actual parameters literally substituted for the formals. Such a literal

substitution is called macro-expansion or in-line expansion.

b) The local named of the called procedure are kept distinct from the names of the calling

procedure.

c) The actual parameters are surrounded by parenthesis if necessary to preserve their

integrity.

18. State the problems in code generation. (R)(Nov/Dec 2018)

Input to code generator

Target program

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 35

Memory Management

Instruction selection

Register allocation issues

Evaluation order

Approaches to code generation issues

19. Define address descriptor.(U) (Apr/May 2019)

Values of the names (identifiers) used in the program might be stored at different

locations while in execution. Address descriptors are used to keep track of memory

locations where the values of identifiers are stored. These locations may include CPU

registers, heaps, stacks, memory or a combination of the mentioned locations.

20. Write the object code sequence for t:=a+b produced by a typical code

generator.(U)(Apr/May 2019)

MOV a,R0

ADD b, R0

MOV R0,t

PART B

1. Discuss in detail about the run time storage arrangement. (U)(NOV/DEC 2017)

2. Describe about the stack allocation in memory management. (R)

3. What are the different storage allocation strategies? (R) (May/June 2013)(Apr/May

2017)(Nov/Dec 2018)(APR/MAY 2019)

4. Mention in detail any 4 issues in storage organization. (R) (Apr/May 2015)

5. Describe the various storage allocation strategies. (R)(Nov/Dec 2008) (May/June 2009)

6. Describe in detail the source language issues. (R) (Nov/Dec 2007)

7. Explain in detail access to nonlocal names. (U)

8. Elaborate storage organization. (U) (May/June 2013)

9. What are the storage allocation strategies? Explain them with example. (U)

(Nov/Dec 2015)

10. Distinguish between static and dynamic storage allocations. (E) (Nov/Dec 2015)

11. Explain the one pass code generation using back patching with Examples.(U)

(Nov/Dec 2015)

12. Explain the following with respect to code generation phase.(R)(Nov/Dec 2016)

(i) Input to code generator

(ii) Target program

(iii) Memory management

(iv) Instruction selection

(v) Register allocation

(vi) Evaluation order.

13. Write in detail about storage allocation in FORTRAN. (R)

14. Explain various issues in the design of code generator. (U) (MAY/JUNE 2016)(Apr/May

2017)

15. Write the algorithm for a simple code generator. (C) (MAY/JUNE 2016)(Nov/Dec 2021)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 36

16. Write the Code Generation Algorithm using Dynamic Programming and generate code

for the statement x=a/(b-c)-s*(e+1)[assume all instructions to be unit cost](C)(Apr/May

2015)

17. Discuss the issues in code generation with example.(R)(Nov/Dec 2017)(Nov/Dec 2021)

18. Translate the following assignment statement into three address code.

D:=(a-b)*(a-c)+(a-c)

Apply code generation algorithm, generate a code sequence for the three address

statement.(C)(APR/MAY 2018)

19. Summarize the issues arise during the design of code generator.(R)(Apr/May

2018)(Nov/Dec 2018

20. Write detailed notes on parameter passing.(R)(Apr/May 2017)(Nov/Dec 2018)

21. Explain the algorithm that generates code for a single basic block with suitable examples.

 (U)(APR/MAY 2019)

22. (a) Elaborate the issues in design of a code Generator(APR/MAY 2022)

23. Construct the basic block and flow graph for the following piece of code

 for i from 1 to 10 do

 for j from 1 to 10 do

 a[i,j]==0.0

for i from 1 to 10 do

a[i,i]=1.0 (APR/MAY 2022)

24. Discuss in detail about stack allocation space of memory and the usage ofstack in the

memory allocation. (NOV/DEC 2021)

25. Elaborate the various issues in code generation with examples. (NOV/DEC 2021)

UNIT V CODE OPTIMIZATION

Part- A

1. Define peephole optimization. (R)

Peephole optimization is a simple and effective technique for locally improving the target

code. This technique is applied to improve the performance of the target program by

examining the short sequence of target instructions, and replacing these instructions by

shorter or faster sequence

2. List the characteristics of peephole optimization(R)(May/June 2007)

(Nov/Dec2016)Point out the characteristics of peephole optimization.(Nov/Dec 2021)

Identify and write down the optimizations that could be performed on a

peephole.(APRIL/MAY 2022)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 37

· Redundant instruction elimination

· Flow of control optimization

· Algebraic simplification

· Use of machine idioms

 ·Reduction in strength

3. How do you calculate the cost of an instruction? (E) (Nov/Dec 2010)

The cost of an instruction can be computed as one plus the cost associated with the source

and destination addressing modes given by added cost.

MOV R0,R1 1

MOV R1,M 2

SUB 5(R0),*10(R1) 3

4. What is a basic block? (R) (Nov/Dec 2010) (Apr/May 2017)
A basic block is a sequence of consecutive statements in which flow of control enters at

the beginning and leaves at the end without halt or possibility of branching.

Eg. t1:=a*5

t2:=t1+7

t3:=t2-5

t4:=t1+t3

t5:=t2+b

5. How would you represent the following equation using DAG? (E) (May/June 2013)

a:=b*-c+b*-c

6. Mention the issues to be considered while applying the techniques for code

optimization. (A)

· The semantic equivalence of the source program must not be changed.

· The improvement over the program efficiency must be achieved without changing the

algorithm of the program.

7. What are the basic goals of code movement? (R)

To reduce the size of the code, i.e. to obtain the space complexity.

To reduce the frequency of execution of code i.e. to obtain the time complexity.

8. What do you mean by machine dependent and machine independent optimization?

(U)

The machine dependent optimization is based on the characteristics of the target machine

for the instruction set used and addressing modes used for the instructions to produce the

efficient target code.

The machine independent optimization is based on the characteristics of the

programming languages for the appropriate programming structure and usage of efficient

arithmetic properties in order to reduce the execution time.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 38

9. What are the different data flow properties? (R)

· Available expressions

· Reaching definitions

· Live variables

· Busy variables

10. What is code motion? (R) (May/June 2007) (May/June 2008)

Code motion is an optimization technique in which amount of code in a loop is

decreased. This transformation is applicable to the expression that yields the same result

independent of the number of times the loop is executed. Such an expression is placed

before the loop.

11. What are the properties of optimizing compiler?(R)(MAY/JUNE 2016)(NOV/DEC

2021)

The source code should be such that it should produce a minimum amount of target code.

There should not be any unreachable code.

Dead code should be completely removed from the source language.

The optimizing compilers should apply following code improving transformations on the

source language.

i) Common sub expression elimination

ii) Dead code elimination

iii) Code movement

iv) Strength reduction

12. Explain the principle sources of optimization. (U) (May/June 2012)
Code optimization techniques are generally applied after syntax analysis, usually both
before and during code generation. The techniques consist of detecting patterns in the
program and replacing these patterns by equivalent and more efficient constructs.

13. What are the 3 areas of code optimization? (R) (May/June 2012)

Local optimization

Loop optimization

Data flow analysis

14. Define local optimization. (R)
The optimization performed within a block of code is called a local optimization.

15. Define constant folding. (R) (May/June 2013) (APRIL/MAY 2022)

Deducing at compile time that the value of an expression is a constant and using the
constant instead is known as constant folding.

16. What do you mean by inner loops? (U)

The most heavily traveled parts of a program, the inner loops, are an obvious target for

optimization. Typical loop optimizations are the removal of loop invariant computations

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 39

and the elimination of induction variables.

17. What is code motion? (R) (April/May 2004, May/June 2007, April/May-2008)

Code motion is an important modification that decreases the amount of code in a

loop.

18. Define Local transformation & Global Transformation. (R)
A transformation of a program is called Local, if it can be performed by looking only at
the statements in a basic block otherwise it is called global.

19. Give examples for function preserving transformations. (U) (May/June 2010)

o Common subexpression elimination

o Copy propagation

o Dead – code elimination

o Constant folding

20. What is meant by Common Subexpressions? (R) (Nov/Dec 2018)
An occurrence of an expression E is called a common subexpression, if E was previously
computed, and the values of variables in E have not changed since the previous
computation.

21. What is meant by Dead Code? (R)
A variable is live at a point in a program if its value can be used subsequently otherwise,
it is dead at that point. The statement that computes values that never get used is known
Dead code or useless code.

22. Mention various techniques used for loop optimization? (R)(APR/MAY 2018)
Code motion

Induction variable elimination

Reduction in strength

23. What is meant by Reduction in strength? (U)
Reduction in strength is the one which replaces an expensive operation by a cheaper one
such as a multiplication by an addition.

24. What is meant by loop invariant computation? (U)

An expression that yields the same result independent of the number of times the loop is
executed is known as loop invariant computation.

25. Define data flow equations. (R) (Nov/Dec 2010)
A typical equation has the form

 Out[S] = gen[S] U (In[S] – kill[S])
and can be read as, “ the information at the end of a statement is either generated within
the state, or enter at the beginning and is not killed as control flows through the
statement”. Such equations are called data flow equations.

26. What is a block? Give its syntax. (R)

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 40

A block is a statement containing its own data declaration.

Syntax:
{
Declaration statements

 }

27. Write three address code sequence for the assignment statement

d:=(a-b)+(a-c)+(a-c).(C)(MayY/June 2016) (NOV/DEC 2021)

28. Mention the criteria for code-improving transformations. (R) (Nov/Dec 2008)

A transformation must preserve meaning of a program (correctness)

A transformation must improve (e.g., speed-up) programs by a measurable amount on

average transformation must worth the effort Indicate the places for potential

improvements can be made by the user and the compiler.

29. Mention the function preserving, code improving transformations.(R)(Nov/Dec2011)

Simply stated, the best program transformations are those that yield the most benefit for

the least effort.

First,the transformation must preserve the meaning of programs. That is,the optimization

must not change the output produced by a program for a given input,or cause an error.

Second,a transformation must,on the average,speed up programs by a measurable

amount.

Third,the transformation must be worth the effort.Some transformations can only be

applied after detailed,often time-consuming analysis of the source program,so there is

little point in applying them to programs that will be run only a few times.

30. What is code motion? Give an example. (R) (Nov/Dec 2010)

Code motion is an optimization technique in which amount of code in a loop isdecreased.

This transformation is applicable to the expression that yields the same result independent

of the number of times the loop is executed. Such an expression is placed before the loop.

31. What is constant folding? (R)(May/June 2013)

Constant folding is the process of replacing expressions by their value if the value can be

computed at complex time.

32. Would you represent the dummy blocks with no statements indicated in the global

data flow analysis? (A) (May/June 2014)

 Region consisting of a statement S:Control can flow to only one block outside the

region

 Loop is a special case of a region that is strongly connected and includes all its

back edges.

 Dummy blocks with no statements are used as technical convenience (indicated as

open circles)



PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 41

33. Define live variable. (R)
When do you call a variable to syntactically live at appoint?(Apr/May 2022)

 A variable is live at a point in a program if its value can be used subsequently.

34. What do you mean by copy propagation(U)(Apr/May 2017)
Copy propagation is the process of replacing the occurrences of targets of direct assignments

with their values.

The assignment statement of the form f := g is called copy statements.

The common subexpression c:=d+e is eliminated

The algorithm uses a new variable t to hold the value of d+e.

Since control may reach c:=d+e either after the assignment of a or after the assignment of b it

would be incorrect to replace c:=d+e by either c:=a or c:=b.

35. Identify the constructs for optimization in basic block. (U) (Nov/Dec 2016)
Structure-preserving transformations

Common sub expression elimination

Dead-code elimination

Algebraic transformations

Reduction in strength.

36. Draw the DAG for the statement a:=(a*b+c)- (a*b+c) (C) (NOV/DEC 2017)

37. What are the properties of optimizing compiler? (R) (NOV/DEC 2017)

1. A transformation must preserve the meaning of programs.

2. A transformation must speed up programs by a measurable amount.

3. A transformation must be worth the effort.

38. List out the primary structure preserving transformations on basic block.(R)

(APR/MAY 2018)

What are the structure preserving transformations on basic blocks? (NOV/DEC

2021)
 Common sub-expression elimination

Dead code elimination

Renaming of temporary variables

Interchange of two independent adjacent statements.

39. What do you mean by DAG? (U)

It is Directed Acyclic Graph. In this common sub expressions are eliminated. So it is a

compact way of representation.

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 42

PART – B

1. Explain the principle sources of optimization in detail. (U)

(May/June 2013, Nov/Dec 2014) (Nov/Dec 2021)

2. Discuss about the following:

i). Copy Propagation ii) Dead-code Elimination and iii) Code motion (R) (Nov/Dec

2010)
3. Write about Data flow analysis of structured programs. (C)(Nov/Dec 2007)

4. Explain optimization of basic blocks. (U)(Apr/May 2017)(Nov/Dec 2007,2018)

5. Discuss in detail the process of optimization of basic block. Give an example. (U)

(May/June 2014, Nov/Dec 214)
6. What is data flow analysis? Explain data flow abstraction with examples. (U)

(May/June 2014)
7. Explain loop optimimization and apply it to the code given below. (A) (Apr/May 2015)

(i) i:=0

(ii) a:=n_3

(iii) IF i<a THEN loop ELSE end

(i) LABLEL Lop

(ii) b:=i_4

(iii) c:=p+b

(iv) d:=M[c]

(v) e:=d_2

(vi) f:=i_4

(vii) g:=p+f

(viii) M[g]:=e

(ix) I:=i+1

(x) a:=n_3

(xi) IF i<a THEN loop ELSE endLABLEL end

8. What are the optimization techniques applied to procedure calls? Explain with example.

(U) (Apr/May 2015)
9. Construct DAG and optimal target code for the expression(C)(Apr/May 2015)

x=((a+b)/(b-c))-(a+b)*(b-c)+/.

10. Explain peephole optimization and various code improving transformations. (U)

(Nov/Dec 2014)

11. What are the advantages of DAG representation? Give example. (R) (Apr/May 2015)

12. Explain principal sources of optimization with examples. (U)(MAY/JUNE

2016)(NOV/DEC 2017)
13. Explain the procedure to find the induction variable in loops and optimize their

computation. What is the function of strength reduction? (U) (NOV/DEC 2015)

14. What is peephole optimization? State and explain the characteristic of peephole

optimization. (U)(NOV/DEC 2015)

18. What is data flow abstraction? Explain it with a program illustrating the data Flow

abstraction. (U)(NOV/DEC 2015)

19. What is live-variable analysis? Explain it with example.(R)(NOV/DEC 2015)

20. Construct DAG for the following Basic Block.

1. t1:=4*i

2. t2:=a[t1]

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 43

3. t3:=4*i

4. t4:=b[t3]

5. t5:=t2*t4

6. t6:=prod+t5

7. Prod:=t6

8. t7:=i+1

9. i:=t7

10. If i<=20 goto (1)(C)(APR/MAY 2017)

21. Write an algorithm for constructing natural loop of a back edge.(C)(NOV/DEC 2016)

22. Explain any four issues that crop up when designing a code generator.(R) (NOV/DEC

2016)

23. Explain global data flow analysis with necessary equations.(R) (NOV/DEC 2016)

24. Determine the basic block of instructions, Control Flow Graph (CFG) and the CFG

dominator tree for following code.

01 a=1

02 b=0

03 L0: a=a+1

04 B=p+1

05 If(a>b) goto L3

06 L1: a=3

07 If(b>a) goto L2

08 B=b+1

09 Goto L1

10 L2: a=b

11 b=p+q

12 If(a>b) goto L0

13 L3: t1=p*q

14 t2=t1+b

15 return t2 (C)(APR/MAY 2018)

25. Construct a code sequence and DAG for the following syntax directed translation of the

expression: (a+b)-(e-(c+d))(C)(APR/MAY 2018)

26. Draw the symbol tables for each of the procedures in the following PASCAL code

(including main) and show their nesting relationship by linking them via a pointer

reference in the structure (or record) used to implement them in memory.Include the

entries or fields for the local variables,arguments and any other information you find

relevant for the purpose of code generation,such as its types and location at run time.

01 procedure main

02 integer a,b,c;

03 procedure f1(a,b)

04 integer a,b;

05 call f2(b,a);

06 end;

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 44

07 procedure f2(y,z);

08 integer y,z;

09: procedure f3(m,n);

10: integer m,n;

11: end;

12: procedure f34(m,n);

13: integer m,n;

14: end;

15: call f3(c,z);

16: callf4(c,z);

17: end;

18: …

19: call f1(a,b);

20: end; (C) (APR/MAY 2018)

27. Construct the DAG for the following basic block. (C) (APR/MAY 2019)

 x=a[i]

a[j]=y

 z=a[i]

28. Write and explain the algorithm for construction of basic blocks. (U) (APR/MAY 2019)

29. A simple matrix-multiplication program is given below:(C) (APR/MAY 2019)

for (i=0;i<n;i++)

for (j=0;j<n;j++)

c[i][j]=0.0;

for (i=0;i<n;i++)

for (j=0;j<n;j++)

for (k=0;k<n;k++)

c[i][j]=c[i][j]+a[i][k]*b[k][j];

 (i)Translate the program into three-address statements. Assume the matrix

 entries are numbers that require 8 bytes, and that matrices are stored in row-

 major order.

 (ii) Construct the flow graph for the code from 1.

 (iii) Identify the loops in the flow graph from 2. (Nov/Dec 2021)

30. Describe the parameter passing technique with an Example(APR/MAY 2022)

31. Explain the storage allocation techniques with an example(APR/MAY 2022)

32. Consider the following basic block , in which all variables are integers and **

 denotes exponentiation

a:=x**s

b:=3

c:=x

d:=c*c

e:=b*s

f:=a+d

PANIMALAR INSTITUTE OF TECHNOLOGY DEPT OF CSE

 III/VI SEM 45

g:=e*f

Apply the following optimization techniques to this basic block in order.Compute the result

of each transformation.

(i) Algebraic Simplification

(ii) Copy propagation

(iii) Constant Folding

(iv) Dead code Elimination

(v) Common sub-expression elimination

33. Formulate the steps for efficient Data Flow algorithm. (NOV/DEC 2021)

34. Describe the representation of array using DAG with example. (NOV/DEC 2021)

35. Summarize in detail about the global dataflow analysis with example.(NOV/DEC 2021)

36. Apply code generation algorithm to generate a code sequence for the three address

statement for the following assignment statement.

 D:=(a-b)*(a-c)+(a-c) (NOV/DEC 2021)

